www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當前位置:首頁 > > 基礎實用電路
[導讀]IGBT屬于場控功率管,具有開關速度快、管壓降小等特點,在各領域的電子電器中得到越來越廣泛的應用,在運用中,針對IGBT單管耐壓值不高的情況,技術人員常常需要將多只IGBT管串聯(lián)以增加IGBT管的耐壓值,拓展其運用范圍。

IGBT屬于場控功率管,具有開關速度快、管壓降小等特點,在各領域的電子電器中得到越來越廣泛的應用,在運用中,針對IGBT單管耐壓值不高的情況,技術人員常常需要將多只IGBT管串聯(lián)以增加IGBT管的耐壓值,拓展其運用范圍。采用多個多個IGBT管串聯(lián)能合理的控制耐壓值和成本,但在IGBT管串聯(lián)運用中其觸發(fā)電路設計以及單只IGBT有限的電壓和電流能力一直是設計的難點。為避免IGBT管電路軍壓問題,IGBT管串聯(lián)盡量使用同品牌同規(guī)格型號的IGBT管。今天我們介紹一種以IGD515EI驅動器為主要器件構成的驅動電路,適用于大功率、高耐壓IGBT模塊串、并聯(lián)電路的驅動和保護。通過光纖傳輸驅動及狀態(tài)識別信號,進行高壓隔離傳輸,具有良好的抗電磁干擾性能和高于15A的驅動電流。因此,該電路適用于高壓大功率場合。

IGBT串聯(lián)電路設計

1. 驅動電路設計

在隔離的高電位端, IGD515EI內部的DC-DC電源模塊只需一路驅動電源就能夠產(chǎn)生柵極驅動所需的±15V電源。器件內還包括功率管的過流和短路保護電路,以及信號反饋檢測功能。該電路是一種性能優(yōu)異、成熟的驅動電路。本方案采用IGD515EI,加入相應的外圍電路,構成了IGBT驅動電路,通過IGD515EI的34腳(SDSOA)多管聯(lián)用特性端實現(xiàn)兩管串聯(lián)應用,解決了IGBT單管耐壓不高的問題。IGBT驅動電路如圖1所示。驅動信號通過光纖接收器HFBR-2521送給驅動模塊,驅動模塊報故障時通過光纖發(fā)射器HFBR-1521送出故障信號給控制電路,由控制電路切斷所有IGBT驅動電路的驅動信號,各個IGD515EI同時輸出-15V的負偏壓,各個IGBT同時關斷,避免個別器件提前關斷,造成過壓擊穿。

 

IGBT串聯(lián)驅動電路

圖1:IGBT串聯(lián)驅動電路

2.IGBT驅動器電源設計

由于IGD515EI只需要單路電源供電,在輸入端的10腳(VCC)和9腳(GND)接入+15V電源,由模塊內部通過DC/DC變換產(chǎn)生±15V和+5V輸出,為光纖發(fā)射器、接收器以及輸出電路提供電源。因而對每個處于高電位的驅動電路來說,只需提供一個15V電源即可,便于做到電位隔離。

3.IGBT柵極觸發(fā)電路設計

驅動器的25腳(G)輸出的驅動電壓為±12V~±15V,這取決于電源電壓;也可不產(chǎn)生負的柵極電壓,這要由具體的應用和所使用的功率管決定。最大柵極充電電流是±15A,充電電流由外接的柵極電阻限定。如果將25腳G通過電阻直接與IGBT:G相連, IGBT的驅動波形上升沿較大,但IGBT導通后上升較快,如圖2所示;

 

IGD515EI輸出端不加MOS管時IGBT的驅動波形(-14V~+12V, 5V/div, 5μs/div)

圖2:IGD515EI輸出端不加MOS管時IGBT的驅動波形(-14V~+12V, 5V/div, 5μs/div)

如果在25腳與IGBT:G中間串入一只MOS管,進行電流放大,可有效地減小IGBT驅動波形的上升沿,縮短IGBT的導通過程,減小IGBT離散性造成的導通不一致性,減小動態(tài)均壓電路的壓力,但IGBT導通后上升較慢,其波形如圖3所示。

 

IGD515EI輸出端加MOS管時IGBT的驅動波形(-14V~+12V, 5V/div, 5μs/div)

圖3:IGD515EI輸出端加MOS管時IGBT的驅動波形(-14V~+12V, 5V/div, 5μs/div)

IGBT串聯(lián)參數(shù)和電容選擇

(1)響應時間電容和中斷時間電容選擇

功率管,特別是IGBT的導通需要幾個微秒,因此功率管導通后要延遲一段時間才能對其管壓降進行監(jiān)測,以確定IGBT是否過流,這個延遲即為“響應時間”。響應時間電容CME的作用是和內部1. 5kΩ上拉電阻構成數(shù)微秒級的延時ta,CME的計算方法如下:

 

響應時間電容CME的算法

在IGBT導通以后,通過IGD515EI內部的檢測電路對19腳的檢測電壓(IGBT的導通壓降)進行檢測。若導通壓降高于設定的門限,則認為IGBT處于過流工作狀態(tài),由IGD515EI的35腳送出IGBT過流故障信號,經(jīng)光纖送給控制電路,將驅動信號封鎖一小段時間。這段時間為截止時間tb,大小由20腳(Cb)與24腳(COM)之間外接的電容Cb確定。對于給定的截止時間,則Cb由下式確定:

 

電容Cb的決定方程式

設計中,我們選擇Cbmax=470nF,此時截止時間為33. 65ms。需要說明的是,通過調整19腳的外接電阻的阻值,可以調整檢測的門限電平。

IGBT的串聯(lián)問題解決

(1)串聯(lián)IGBT電壓均衡

串聯(lián)IGBT工作的一個重要方面是對由于器件的離散特性與驅動電路的不匹配在器件兩端引起的靜態(tài)和動態(tài)不均衡。

靜態(tài)均衡可以在IGBT的C、E兩端并聯(lián)阻值較大的電阻R4來實現(xiàn),如圖4所示。通過并聯(lián)電阻的分壓,保證在IGBT關斷期間每只IGBT兩端的電壓相等。該電阻必須參考IGBT的漏電流,在此基礎上進行合適的選擇,要使流過分壓電阻的電流比IGBT的最大漏電流大若干倍,同時要注意均壓電阻的阻值不能過分小,以免增加功率損耗。

動態(tài)均壓電路由圖4中的D1、R1、C1組成。在IGBT開始關斷或開始導通時,由于IGBT導通的離散性,必然有個別IGBT提前導通或提前關斷,在遲后導通和提前關斷的IGBT兩端,必然會產(chǎn)生尖峰電壓,在IGBT的兩端通過D1并聯(lián)電容C1,使尖峰電壓必須先對C1充電,這樣IGBT兩端的尖峰電壓的上升速度受到C1的限制,并可由并聯(lián)在每個IGBT兩端的C1分壓,由C1實現(xiàn)對動態(tài)尖峰電壓的均衡。在IGBT導通期間,由于D1的單向導電特性, C1通過R1、IGBT將儲存的電荷放掉,以便吸收IGBT下次關斷時產(chǎn)生的浪涌電壓。選擇R1時要考慮C1的放電時間常數(shù),確定合適的阻值。

 

IGBT均壓等效電路

圖4:IGBT均壓等效電路

對于串聯(lián)IGBT來說,其動態(tài)不均壓最為嚴重的情況是由于IGBT導通延遲時間的差異引起的,在動態(tài)均壓效果良好的情況下, IGBT上的電壓變化將受到C1的限制。設每個IGBT能夠承擔的額外的電壓能力為△UIGBT,在串聯(lián)IGBT未完全導通時刻回路中的電流(可用IGBT完全導通時刻回路中的放電電流代替)是I,設該IGBT相對于其它IGBT的導通遲后的時間是△t,則均壓電容C1應滿足下式要求:

C1=I△t/△UIGBT

△UIGBT=VIGBT-UN/n

VIGBT是IGBT的額定工作電壓,UN是串聯(lián)IGBT的工作電壓,n是IGBT的串聯(lián)數(shù)量。根據(jù)上式可求出均壓電容C1,對R1的取值既要保證3R1C1≤脈沖寬度τ,以便在脈內使電容C1上的電荷通過R1放完,同時還要使其起到限流作用,即盡量取得大一些。

(2)串聯(lián)IGBT的保護

在多只IGBT串聯(lián)時,將IGD515EI的34腳(SD-SOA)應接入+5V。這樣,即使某個IGBT發(fā)生故障,故障的IGBT也不會提前關斷,而是將故障信號通過光纖送給控制電路,由控制電路關斷所有IGBT的驅動信號,所有的IGBT同時關斷,即使在出現(xiàn)故障的情況下也要保證串聯(lián)IGBT關斷的一致性。

為了防止IGBT柵極過壓,采用如圖1中D1、D2背對背15V穩(wěn)壓管。為了防止IGBT過熱,在IGBT的散熱器上加溫度繼電器。同時,采用互感器檢測通過IGBT的電流,檢測的信號送至比較器與設定的電平值相比較。電流超過設定值時就輸出過流信號,由控制電路關斷IGBT的驅動信號。

兩只IGBT串聯(lián)工作結果

最初我們使用2只IGBT模塊串聯(lián)作為剛管調制器的放電開關,工作電壓為2kV,前沿<0. 2μs,波形如圖6所示。該調制器連續(xù)工作數(shù)十小時,輸出波形穩(wěn)定可靠,證明驅動電路參數(shù)選擇合理。將取得經(jīng)驗和試驗數(shù)據(jù)應用于10只IGBT串聯(lián),工作于8kV的剛管調制器中也取得了良好的效果,其波形與圖5類似。

 

調制器輸出電壓波形(500V/div, 5μs/div)

圖5 調制器輸出電壓波形(500V/div, 5μs/div)

兩只串聯(lián)IGBT管具有良好的驅動特性,輸出的正向柵極電壓和反向柵極電壓均能滿足要求。該電路只需一個驅動電源,克服了以往模塊驅動中外接電源較多的缺點,在實際應用中相當穩(wěn)定。

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內容真實性等。需要轉載請聯(lián)系該專欄作者,如若文章內容侵犯您的權益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: 驅動電源

在工業(yè)自動化蓬勃發(fā)展的當下,工業(yè)電機作為核心動力設備,其驅動電源的性能直接關系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅動電源設計中至關重要的兩個環(huán)節(jié),集成化方案的設計成為提升電機驅動性能的關鍵。

關鍵字: 工業(yè)電機 驅動電源

LED 驅動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設備的使用壽命。然而,在實際應用中,LED 驅動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設計、生...

關鍵字: 驅動電源 照明系統(tǒng) 散熱

根據(jù)LED驅動電源的公式,電感內電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關鍵字: LED 設計 驅動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動汽車的核心技術之一是電機驅動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅動系統(tǒng)中的關鍵元件,其性能直接影響到電動汽車的動力性能和...

關鍵字: 電動汽車 新能源 驅動電源

在現(xiàn)代城市建設中,街道及停車場照明作為基礎設施的重要組成部分,其質量和效率直接關系到城市的公共安全、居民生活質量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關鍵字: 發(fā)光二極管 驅動電源 LED

LED通用照明設計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關鍵字: LED 驅動電源 功率因數(shù)校正

在LED照明技術日益普及的今天,LED驅動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關鍵字: LED照明技術 電磁干擾 驅動電源

開關電源具有效率高的特性,而且開關電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現(xiàn)在的LED驅動電源

關鍵字: LED 驅動電源 開關電源

LED驅動電源是把電源供應轉換為特定的電壓電流以驅動LED發(fā)光的電壓轉換器,通常情況下:LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: LED 隧道燈 驅動電源
關閉
關閉