www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當前位置:首頁 > 工業(yè)控制 > 工業(yè)控制
[導讀]摘要:這里利用AD公司的熱電制冷控制器ADN8830設計出高性能、高穩(wěn)定性的TEC控制電路。該電路通過簡單的電容、電阻構成的外部PID(比例積分微分)補償網絡,能夠使探測器溫度在10 S內穩(wěn)定在最佳工作點,溫度控制精度可達

摘要:這里利用AD公司的熱電制冷控制器ADN8830設計出高性能、高穩(wěn)定性的TEC控制電路。該電路通過簡單的電容、電阻構成的外部PID(比例積分微分)補償網絡,能夠使探測器溫度在10 S內穩(wěn)定在最佳工作點,溫度控制精度可達0.01℃。實驗結果表明該方案具有效率高、功耗低、體積小等優(yōu)點,是一種較好的溫控設計方案。
關鍵詞:ADN8830;溫度控制;TEC;PID;非制冷紅外焦平面陣列

    紅外技術作為一種發(fā)現(xiàn)、探測和識別目標的重要手段在軍民兩用技術中有著廣泛的應用,非制冷紅外焦平面陣列技術的發(fā)展極大地提高了系統(tǒng)的性能。非制冷紅外熱像儀采用的是不需要制冷的熱探測器焦平面陣列,利用紅外輻射使焦平面上敏感像元的溫度改變,從而使電阻隨之改變,來探測目標的溫度特性。所以,只有盡可能地保證焦平面陣列中各敏感像元自身基準溫度穩(wěn)定且一致,才能夠提高熱像儀的探測靈敏度,減小系統(tǒng)后期非均勻性校正的難度,最終從根本上提高熱像儀的探測靈敏度,改善熱像儀的成像性能。目前,在實際的非制冷紅外焦平面陣列探測器中采用半導體熱電制冷器(TEC)來穩(wěn)定基準溫度。在此著重介紹一種基于ADN8830的高性能TEC溫度控制電路及其PID補償網絡的調節(jié)方法。

1 溫度控制電路設計
    TEC(Thermo Electric Cooler)是用兩種不同半導體材料(P型和N型)組成PN結,當PN結中有直流電通過時,由于兩種材料中的電子和空穴在跨越PN結移動過程中的吸熱或放熱效應(帕爾帖效應),就會使PN結表現(xiàn)出制冷或制熱效果,改變電流方向即可實現(xiàn)TEC的制冷或制熱,調節(jié)電流大小即可控制制熱制冷量輸出。
    利用TEC穩(wěn)定目標溫度的方法如圖1所示。


    圖1中第一部分是溫度傳感器。這個傳感器是用來測量安放在TEC端的目標物體的溫度。期望的目標物體溫度是用一個設定點電壓來表示,與溫度傳感器產生的代表實際目標物體溫度的電壓通過高精度運算放大器進行比較,然后產生誤差電壓。這個電壓通過高增益的放大器放大,同時也對因為目標物體的冷熱端引起的相位延遲進行補償,然后再驅動H橋輸出,H橋同時控制TEC電流的方向和大小。當目標物體的溫度低于設定點溫度時,H橋朝TEC致熱的方向按一定的幅值驅動電流;當目標物體的溫度高于設定點溫度時,H橋會減少TEC的電流甚至反轉TEC的電流方向來降低目標物體溫度。當控制環(huán)路達到平衡時,TEC的電流方向和幅值就調整好了,目標物體溫度也等于設定的溫度。
    在該設計中,對于TEC的控制選用ADI公司的TEC控制器ADN8830。ADN8830是目前最優(yōu)秀的單芯片高集成度、高輸出效率、高性能的TEC功率驅動模塊之一,用于設定和穩(wěn)定TEC的溫度,在典型應用中,最大溫漂電壓低于250 mV,能夠使目標溫度誤差低于±0.01℃。每個加載在ADN8830輸入端的電壓對應一個目標溫度設定點。適當的電流通過TEC將驅動TEC對紅外焦平面供熱或制冷。紅外焦平面的溫度由負溫度系數熱敏電阻來測量并反饋給ADN8830,用于調整系統(tǒng)回路和驅動TEC工作。
    這里所設計的用ADN8830實現(xiàn)非制冷紅外焦平面溫度控制電路如圖2所示。


    圖2中的電阻RTH即是非制冷紅外焦平面組件中自帶的熱敏電阻。電阻R4阻值的選擇與熱敏電阻RTH。的溫度特性和環(huán)境溫度有關。熱敏電阻RTH的阻值并不是隨著溫度的升高而線性下降的,電阻R4的阻值應該按式(1)計算:

式中RT1和RT3分別表示熱敏電阻在工作溫度的兩個上、下極限時的阻值,RT2為熱敏電阻在平均溫度下的阻值。在實際應用中,可取工作溫度的兩個極限分別為5℃、45℃,則平均溫度為25℃。通過查閱熱敏電阻溫度曲線可以得到RT1=10.735kΩ,RT2=4.700kΩ,RT3=2.250 kΩ,從而計算出電阻R4的值為3.304kΩ,取R4=3.300kΩ。
    ADN8830溫控電路的控制原理是通過采樣熱敏電阻上的電壓與非制冷紅外焦平面正常工作所設定的溫度相比較,從而調整致冷器中流過的電流的方向和大小來控制溫度的。ADN8830的管腳4(TEMPSET)的設定電壓值應該按式(2)計算:

    設定溫度=25℃時,熱敏電阻RTH=4.7 kΩ,參考電壓VREF由芯片內部提供,為2.47V,則VSET為1.45V。

2 PID網絡調節(jié)及參數設定
    PID(Proportion Integrator Differentiator)積分微分比例調節(jié)補償網絡是TEC溫度控制最關鍵的部分,是影響到TEC控制器的響應速度和溫度穩(wěn)定性的一個關鍵因素。用PID控制技術作為核心,以減少靜態(tài)誤差、提高控制精度。PID相當于放大倍數可調的放大器,用比例運算和積分運算來提高調節(jié)精度,用微分運算加速過渡過程,較好地解決了調節(jié)速度與精度的矛盾。PID的數學模型可用式(3)表示:

式中:KP為比例系數;T1為積分時間常數;TD為微分時間常數。
    ADN8830 TEC控制器采用外部補償網絡,僅需要幾個電阻和電容,如圖3所示。不同的應用設計者可以根據自己的熱負載特性來調整補償網絡,從而達到最佳的溫度設定時間和穩(wěn)定性容限,但補償網絡的轉換周期對控制系統(tǒng)的穩(wěn)定性影響較大。為了確保溫度控制的穩(wěn)定性,補償網絡的轉換周期必須小于TEC和溫度傳感器的熱時間常數。但是TEC和溫度傳感器的熱時間常數是一個難以描述的因素,無法通過計算方式來設計網絡參數。針對圖3的PID網絡通??梢酝ㄟ^以下調試步驟來優(yōu)化參數:
    (1)將電容C9短路、C11開路,僅只留下電阻R6和R5構成一簡單的補償比例網絡;
    (2)增加電阻R6和R5的比例,從而增加增益直至TEC兩端的電壓開始出現(xiàn)振蕩,然后將R6和R5的比例縮小至原來的1/2;
    (3)將電容C9串接到補償網絡,并減小該電容的值直至TEC兩端的電壓開始出現(xiàn)振蕩,然后將電容C9的值增加1倍,電容C9的初始值基于式(4)使單位增益為0.1 Hz;

    (4)短路電阻R7并加入電容C11使TEC兩端的電壓開始出現(xiàn)振蕩,這時可以減小電容C11或者重新接入電阻R7使TEC兩端的電壓穩(wěn)定;
    (5)改變TEMPSET的電壓值來調節(jié)TEC兩端的電壓穩(wěn)定時間,TEMPSET的變化約在100 mV,然后減小電容C11,C9和電阻R7從而減小穩(wěn)定時間,但是會造成輸出電壓過充;
    (6)添加與R6和C9并聯(lián)的反饋電容C10,反饋電容C10在不增加穩(wěn)定時間的前提下能夠提高系統(tǒng)的穩(wěn)定性。一般330 pF~1 nF的電容比較合適。
    本文設計的溫度控制電路利用圖3的PID網絡結構,當C9=22μF,C10=330 pF,C1l=1μF,R7=1.388 MΩ,R5=1.092 MΩ,R6=175 kΩ時,系統(tǒng)從環(huán)境溫度改變到目標溫度的建立時間在10 S以內,精度可達0.01℃,并且能保持長期穩(wěn)定。


3 性能測試
    實驗測試是在室溫下進行的,圖4中所示的信號為ADN8830的管腳30(TEMPOUT)的電壓變化,其電壓的變化與傳感器探測到的溫度變化相一致,因此可以從此電壓變化的特性得到溫度變化的特性。如圖4所示可以看到經過8.4s,電壓穩(wěn)定在預設電壓1.45 V上,也就意味著溫度從環(huán)境溫度改變到目標溫度25℃的建立時間為8.4s,且過充較小,并達到了穩(wěn)定。該電路具有正常工作指示和工作失效報警指示功能。當熱敏電阻檢測到的溫度達到設定溫度(本電路設定溫度為25℃)時,ADN8830的管腳5(TEMPLOCK)輸出高電平,表示非制冷紅外焦平面的工作溫度已達設定溫度,此時發(fā)光二極管D1發(fā)光;當管腳1(THERMFAULT)輸出高電平時,表示電路工作異常,發(fā)光二極管D2被點亮。


4 結 語
    本文設計的基于ADN8830的非制冷紅外焦平面溫度控制電路效率高、功耗低、體積小,通過實際應用證明能夠把溫度控制在預設溫度上,并且精度可達0.01℃。通過幾個簡單的電阻電容構成的外部補償網絡能夠在10s內把溫度控制在預設溫度上,并使整個溫控系統(tǒng)保持長時間穩(wěn)定工作狀態(tài)。

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內容真實性等。需要轉載請聯(lián)系該專欄作者,如若文章內容侵犯您的權益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

構建可靠的硬件要求我們在設計階段考慮所有公差。許多參考文獻討論了參數偏差導致的有源元件誤差——展示了如何計算運算放大器失調電壓、輸入電流和類似參數的影響——但很少有人考慮無源元件容差。確實考慮了組件容差的參考文獻是從科學...

關鍵字: 元件公差 電路設計

對于非比例電路,我們必須假設完整的電阻容差,因為容差不會分開。我們可以將輸出電壓計算為 V OUT =IR,其中 I 是理想的 1mA 電流源,R 是 5% 的電阻器(圖 1a)。V OUT =1 mA (1±0.05±...

關鍵字: 電路設計 非比例電路

我們是否設計了一個電源,后來才發(fā)現(xiàn)我們的布局效率低下?按照這些關鍵提示創(chuàng)建電源布局并避免調試壓力。什么是電源設計的布局?你知道嗎?一個完美的電路設計,電源布局顯得尤為重要。由于不同的設計方案的出發(fā)點不同,而有所差異,但是...

關鍵字: 電源布局 電路設計

摘要:基于攝像機遠程操作技術,利用單片機控制步進電機,建立攝像鏡頭的電力驅動系統(tǒng)。此系統(tǒng)節(jié)約了經濟成本,通過人機交互閉環(huán)系統(tǒng)、模塊化等方法,進一步提高了系統(tǒng)的通用性,使其可以應用于工程。

關鍵字: 步進電機 單片機 電路設計

一直以來,智能硬件都是大家的關注焦點之一。因此針對大家的興趣點所在,小編將為大家?guī)碇悄芄β誓K的相關介紹,詳細內容請看下文。

關鍵字: 智能功率模塊 IPM 電路設計

與傳統(tǒng)聚合物電容器相比,多層陶瓷電容器 (MLCC) 在電力電子設計中很受歡迎,原因有很多: MLCC 提供: · 具有相對較高電容的小輪廓。 · 非常低的等效串聯(lián)電阻 (ESR)。 · 非常低的等效串聯(lián)電感 (...

關鍵字: MLCC電容 電路設計

許多同步降壓轉換器設計人員面臨一個共同的問題:如何最好地連接開漏電源良好標志,也稱為電源良好 (PGOOD) 引腳。在這篇文章中,我將探討電源良好與各種不同的上拉源相關聯(lián)時的預期行為。有一些錯誤信息四處流傳,希望這篇文章...

關鍵字: 降壓轉換器 電路設計

嵌入式開發(fā)是指利用分立元件或集成器件進行電路設計、結構設計,再進行軟件編程(通常是高級語言),實驗,經過多輪修改設計、制作,最終完成整個系統(tǒng)的開發(fā)。

關鍵字: 嵌入式開發(fā) 電路設計 結構設計

來源|羅姆R課堂工程軟件和在線資源往往比較昂貴,但是對于專業(yè)人員、學生和愛好者來說非常有益。用戶開展項目或者僅進行工程驗證時,這些資源往往是必要的,但是相關成本卻令許多人望而卻步。本文為工程師和工程研究愛好者們尋找了幾款...

關鍵字: 電路設計

電路設計并不是想當然,你腦子一拍就可以設計出來,有沒有經驗設計出來的東西是相差千里。今天我們來看看電子工程師會出現(xiàn)的下面的幾個誤區(qū),你是不是也這樣想的。誤區(qū)一:這板子的PCB設計要求不高,就用細一點的線,自動布吧。點評:...

關鍵字: 電路設計

工業(yè)控制

13478 篇文章

關注

發(fā)布文章

編輯精選

技術子站

關閉