www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當(dāng)前位置:首頁(yè) > 測(cè)試測(cè)量 > 測(cè)試測(cè)量
[導(dǎo)讀]1 引言   人工神經(jīng)網(wǎng)絡(luò)是基于模仿生物大腦的結(jié)構(gòu)和功能而構(gòu)成的一種信息處理系統(tǒng)。國(guó)際著名 的神經(jīng)網(wǎng)絡(luò)專家Hecht Nielsen 給神經(jīng)網(wǎng)絡(luò)的定義是:“神經(jīng)網(wǎng)絡(luò)是一個(gè)以有向圖為拓?fù)浣Y(jié)構(gòu)的動(dòng)態(tài)系統(tǒng),它通過(guò)對(duì)連續(xù)或斷續(xù)

1 引言

  人工神經(jīng)網(wǎng)絡(luò)是基于模仿生物大腦的結(jié)構(gòu)和功能而構(gòu)成的一種信息處理系統(tǒng)。國(guó)際著名 的神經(jīng)網(wǎng)絡(luò)專家Hecht Nielsen 給神經(jīng)網(wǎng)絡(luò)的定義是:“神經(jīng)網(wǎng)絡(luò)是一個(gè)以有向圖為拓?fù)浣Y(jié)構(gòu)的動(dòng)態(tài)系統(tǒng),它通過(guò)對(duì)連續(xù)或斷續(xù)式的輸入作狀態(tài)響應(yīng)而進(jìn)行信息處理”。神經(jīng)網(wǎng)絡(luò)系統(tǒng)[1,2] 是由大量的、同時(shí)也是很簡(jiǎn)單的處理單元(或稱神經(jīng)元),通過(guò)廣泛地互相連接而形成的復(fù)雜網(wǎng)絡(luò)系統(tǒng)。神經(jīng)網(wǎng)絡(luò)具有的超高維性、強(qiáng)非線性等動(dòng)力學(xué)特性,使其具有原則上容錯(cuò)、結(jié)構(gòu)拓?fù)漪敯?、?lián)想、推測(cè)、記憶、自適應(yīng)、自學(xué)習(xí)、并行和處理復(fù)雜模式等功能,帶來(lái)了提 供更佳診斷性能的潛在可能性。

  目前神經(jīng)網(wǎng)絡(luò)應(yīng)用在模擬電路上主要是神經(jīng)網(wǎng)絡(luò)故障字典法。把模擬電路的故障診斷看成是一個(gè)分類問(wèn)題,利用神經(jīng)網(wǎng)絡(luò)的分類功能來(lái)診斷故障。在測(cè)前把神經(jīng)網(wǎng)絡(luò)訓(xùn)練成一部故障字典,字典的信息蘊(yùn)含在網(wǎng)絡(luò)的連接權(quán)值中,只要輸入電路的測(cè)量特征,就可以從其輸出 查出故障。目前用于模擬電路故障診斷的神經(jīng)網(wǎng)絡(luò)主要有BP 神經(jīng)網(wǎng)絡(luò)和SOM 神經(jīng)網(wǎng)絡(luò)兩 種類型。BP 是一種多層網(wǎng)絡(luò)誤差反向傳播網(wǎng)絡(luò),SOM 神經(jīng)網(wǎng)絡(luò)一種自組織特征映射神經(jīng)網(wǎng)絡(luò)(Self-organizing Feature Map)。本文采用標(biāo)準(zhǔn)BP 神經(jīng)網(wǎng)絡(luò)來(lái)實(shí)現(xiàn)對(duì)最優(yōu)測(cè)試集的生成。

  2 基于神經(jīng)網(wǎng)絡(luò)的最優(yōu)測(cè)試集的生成實(shí)現(xiàn)設(shè)計(jì)

  BP 神經(jīng)網(wǎng)絡(luò)對(duì)最優(yōu)測(cè)試集的生成事先沒(méi)有標(biāo)準(zhǔn)的樣本,只有設(shè)定的約束條件,對(duì)目標(biāo) 問(wèn)題的求解是一個(gè)反復(fù)比較選擇、自我建立并不斷更新其樣本庫(kù)的過(guò)程。

  (1)神經(jīng)元激活函數(shù)

  激活函數(shù)又稱傳遞函數(shù)。對(duì)于模擬電路故障診斷,神經(jīng)元激活函數(shù)可以采用對(duì)稱的 sigmoid 函數(shù)y(x)=1/(1+e-x)-0.5,也可以采用非對(duì)稱的sigmoid 函數(shù)y(x)=1/(1+e-x)。

 ?。?)輸入層

  輸入層從電路拓?fù)浣Y(jié)構(gòu)接受各種狀態(tài)信息提取。神經(jīng)網(wǎng)絡(luò)的輸入節(jié)點(diǎn)數(shù)應(yīng)與輸入特征的 維數(shù)相同,輸入節(jié)點(diǎn)與電路的節(jié)點(diǎn)數(shù)一一對(duì)應(yīng)。

 ?。?)輸出層

  輸出層輸出診斷結(jié)果。輸出結(jié)點(diǎn)數(shù)與預(yù)期節(jié)點(diǎn)選擇數(shù)目相同,每個(gè)輸出結(jié)點(diǎn)與目標(biāo)一一對(duì)應(yīng)。當(dāng)神經(jīng)網(wǎng)絡(luò)用于選擇時(shí),若所有輸出結(jié)點(diǎn)的輸出值均非空,則認(rèn)為本次生成最多數(shù)目 的節(jié)點(diǎn);若有幾個(gè)輸出結(jié)點(diǎn)的輸出值為0,則認(rèn)為生成了較少的測(cè)試節(jié)點(diǎn)。

  (4)隱層數(shù)

  BP 網(wǎng)絡(luò)的輸入結(jié)點(diǎn)數(shù)和輸出結(jié)點(diǎn)數(shù)是由實(shí)際問(wèn)題本身決定的。隱層用于對(duì)信息進(jìn)行處理和轉(zhuǎn)化。網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計(jì)的難點(diǎn)和重點(diǎn)在于隱層結(jié)構(gòu)的設(shè)計(jì),具體是指隱層數(shù)目和各隱層的神經(jīng)元數(shù)目。確定隱層的結(jié)構(gòu)很大程度上決定著網(wǎng)絡(luò)質(zhì)量。隱層用于對(duì)信息進(jìn)行處理和轉(zhuǎn)化。 隱層的層數(shù)取決于問(wèn)題的特點(diǎn)。Funahashi 證明了對(duì)于任何在閉區(qū)間內(nèi)的一個(gè)連續(xù)函數(shù)都可 以用單隱層BP 網(wǎng)絡(luò)逼近,因而一個(gè)三層BP 網(wǎng)絡(luò)可以完成任意的n 維到m 維的映射,說(shuō)明了單隱層的可行性[4],但并不確定是最合理的。本文采用最常用的單隱層BP 網(wǎng)絡(luò)構(gòu)造神經(jīng) 網(wǎng)絡(luò)。

 ?。?)隱結(jié)點(diǎn)數(shù)

  隱層結(jié)點(diǎn)數(shù)的選擇非常重要,隱節(jié)點(diǎn)數(shù)與問(wèn)題的復(fù)雜程度有關(guān),不存在一個(gè)理想的解析 式。隱結(jié)點(diǎn)的數(shù)目與問(wèn)題的要求、輸入、輸出數(shù)目有關(guān)。隱結(jié)點(diǎn)數(shù)目太多會(huì)導(dǎo)致學(xué)習(xí)時(shí)間過(guò) 長(zhǎng),誤差不一定最佳,數(shù)目太少則可能會(huì)使網(wǎng)絡(luò)訓(xùn)練不出來(lái),網(wǎng)絡(luò)的學(xué)習(xí)和聯(lián)想能力降低。

  除了一些參考選擇公式外,還可以先放入足夠多的隱結(jié)點(diǎn),通過(guò)學(xué)習(xí)將作用甚微的隱結(jié)點(diǎn)逐 步剔除直到不可收縮為止;或者反向添加至合理數(shù)目為止。 神經(jīng)網(wǎng)絡(luò)故障診斷系統(tǒng)的訓(xùn)練方法如下:

  (1)權(quán)初值確定

  系統(tǒng)是非線性的,不合適的權(quán)初始值會(huì)使學(xué)習(xí)過(guò)程陷入局部最優(yōu),甚至不收斂。權(quán)一般取隨機(jī)數(shù),而且權(quán)值要小,這樣可使初始權(quán)要在輸入累加時(shí)使每個(gè)神經(jīng)元的狀態(tài)值盡可能接近于零,保證每個(gè)神經(jīng)元都在它們的傳輸函數(shù)導(dǎo)數(shù)最大的地方進(jìn)行,這樣就不至于一開(kāi)始就落在誤差平坦區(qū)上。本文的神經(jīng)網(wǎng)絡(luò)故障診斷系統(tǒng)中,網(wǎng)絡(luò)初始值均取在閉區(qū)間[-0.1,0.1] 內(nèi)均勻分布的隨機(jī)數(shù)。

  (2)樣本輸入方式

  批處理方式存在局部最優(yōu),在線輸入方式容易引起權(quán)值調(diào)節(jié)的振蕩現(xiàn)象。避免振蕩往往 根據(jù)樣本集的特點(diǎn)進(jìn)行多次嘗試,局部最優(yōu)可以通過(guò)修改網(wǎng)絡(luò)輸出誤差來(lái)緩解。本文樣本輸 入采用批處理方式。

  (3)誤差函數(shù)的選擇 神經(jīng)網(wǎng)絡(luò)訓(xùn)練容易出現(xiàn)局部最優(yōu),因此本文設(shè)計(jì)網(wǎng)絡(luò)不要求輸出誤差很小,通過(guò)適當(dāng)增 加訓(xùn)練時(shí)間來(lái)提高準(zhǔn)確度。

  3 BP 網(wǎng)絡(luò)在最優(yōu)測(cè)試集上的應(yīng)用

 ?。?)分析電路,構(gòu)造網(wǎng)絡(luò)結(jié)構(gòu) 對(duì)電路中的各節(jié)點(diǎn)支路進(jìn)行分析,建立改進(jìn)的關(guān)聯(lián)矩陣。取得用于選擇的測(cè)試向量。根 據(jù)測(cè)試向量維數(shù)和目標(biāo)要求數(shù)來(lái)選擇網(wǎng)絡(luò)各層的結(jié)點(diǎn)數(shù)。

(2)輸入特征向量抽取 取電路節(jié)點(diǎn)對(duì)支路的關(guān)聯(lián)信息作為神經(jīng)網(wǎng)絡(luò)的輸入特征。由于各節(jié)點(diǎn)的關(guān)聯(lián)信息相差可 能會(huì)比較大,神經(jīng)網(wǎng)絡(luò)輸入特征的各分量量限也不同。

  

  其中xi 是輸入特征的第i 個(gè)分量,vi 是同類關(guān)聯(lián)信息的平均值,這樣使輸入特征的各分 量量限基本相同,而且仍然可以表征原輸入特征。

 ?。?)輸出特征值設(shè)定

  輸出特征維數(shù)取決于輸出的表示方法和要識(shí)別或分類的數(shù)目,當(dāng)電路有M 個(gè)待監(jiān)測(cè)節(jié) 點(diǎn)時(shí),電路狀態(tài)有M 類,本文把無(wú)節(jié)點(diǎn)輸出做為輸出節(jié)點(diǎn)坐標(biāo)為0,輸出特征維數(shù)選擇為M, 輸出特征分量與輸出節(jié)點(diǎn)一一對(duì)應(yīng)。

 ?。?)訓(xùn)練樣本集的選擇

  同故障字典的樣本集選擇不同,最優(yōu)測(cè)試集的訓(xùn)練樣本一開(kāi)始時(shí)不存在的,是在制定的 約束條件下,不斷反復(fù)運(yùn)算的動(dòng)態(tài)過(guò)程,是一個(gè)自我學(xué)習(xí)更新的過(guò)程。因此本網(wǎng)絡(luò)將樣本集 訓(xùn)練融合到網(wǎng)絡(luò)的學(xué)習(xí)過(guò)程中。

  4 仿真結(jié)果

  本文所選擇的目標(biāo)電路模型為實(shí)際某設(shè)備的使用組件。電路板屬于較為典型的模擬電路 板,電路板的原理圖如圖1。

  對(duì)電路板進(jìn)行仿真試驗(yàn),得到結(jié)果如表1,其指標(biāo)衡量如表2。

  運(yùn)用神經(jīng)網(wǎng)絡(luò)方法得到的種群中的個(gè)體元素仍比較分散,說(shuō)明神經(jīng)網(wǎng)絡(luò)在自主學(xué)習(xí)訓(xùn)練 下要將當(dāng)前的最優(yōu)解解出的能力相對(duì)較弱一些,表1 中給出的結(jié)果是應(yīng)用神經(jīng)網(wǎng)絡(luò)多次運(yùn)算 得到的出現(xiàn)頻率較高的解。

  在設(shè)定生成較少的測(cè)設(shè)點(diǎn)數(shù)量時(shí),應(yīng)用神經(jīng)網(wǎng)絡(luò)能夠解出點(diǎn)集,但各項(xiàng)指標(biāo)與使用進(jìn)化 規(guī)劃算法的解相比相對(duì)較差,整體效果類似于陷入“早熟”。在設(shè)定生成較多的測(cè)試點(diǎn)數(shù)量時(shí),應(yīng)用神經(jīng)網(wǎng)絡(luò)來(lái)對(duì)目標(biāo)點(diǎn)集的查找解算較為困難,對(duì)目標(biāo)求解的明晰性不強(qiáng),目標(biāo)集(樣本集)內(nèi)的元素不趨同,求解精度不高。

  應(yīng)用傳統(tǒng)的 BP 神經(jīng)網(wǎng)絡(luò)解決TSP 或集覆蓋等問(wèn)題時(shí),可行解獲得的效率低,網(wǎng)絡(luò)較難 收斂到可行解。隨著問(wèn)題的復(fù)雜化,傳統(tǒng)的BP 神經(jīng)網(wǎng)絡(luò)方法搜索到嚴(yán)格最優(yōu)解或近似最優(yōu) 解的困難加大,容易陷入局部最優(yōu)。求解速度較慢,網(wǎng)絡(luò)特性相對(duì)不夠穩(wěn)定。

  5 結(jié)論

  本文應(yīng)用神經(jīng)網(wǎng)絡(luò)對(duì)模擬電路最優(yōu)測(cè)試集生成上進(jìn)行了初步實(shí)現(xiàn)。仿真結(jié)果說(shuō)明當(dāng)電路結(jié)構(gòu)變得復(fù)雜以后,神經(jīng)網(wǎng)絡(luò)的訓(xùn)練和識(shí)別所需要的時(shí)間都比較長(zhǎng),運(yùn)算時(shí)間大大增加,甚至在限定的最大時(shí)間內(nèi)出現(xiàn)求不出參考解的情況。目前,應(yīng)用進(jìn)化規(guī)劃算法進(jìn)行最優(yōu)測(cè)試集的生成對(duì)復(fù)雜電路結(jié)構(gòu)求解問(wèn)題上顯示出其優(yōu)越性,在設(shè)定的時(shí)間內(nèi)求解精度高,在設(shè)定的 精度下運(yùn)算時(shí)間短。

  本文作者創(chuàng)新點(diǎn):在復(fù)雜電路結(jié)構(gòu)的求解問(wèn)題上,應(yīng)用進(jìn)化規(guī)劃算法進(jìn)行最優(yōu)測(cè)試集的 生成,在設(shè)定的時(shí)間內(nèi)求解精度高,在設(shè)定的精度下運(yùn)算時(shí)間短。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

當(dāng)電路中的信號(hào)發(fā)生突變(特別是數(shù)字信號(hào))時(shí),信號(hào)經(jīng)常會(huì)出現(xiàn)一個(gè)電噪聲。這個(gè)噪聲在一般環(huán)境下不會(huì)對(duì)外產(chǎn)生影響。但是在某些特殊情況下,該信號(hào)會(huì)對(duì)外產(chǎn)生較強(qiáng)的傳導(dǎo)干擾,進(jìn)而影響其他電路的正常工作

關(guān)鍵字: 電路 數(shù)字信號(hào) 噪聲

當(dāng)汽車進(jìn)行轉(zhuǎn)彎時(shí),司機(jī)打開(kāi)轉(zhuǎn)向燈,尾燈會(huì)根據(jù)轉(zhuǎn)向依次被點(diǎn)亮,經(jīng)過(guò)一定的間隔后,再全部被消滅。最后不停地重復(fù),直到司機(jī)關(guān)閉轉(zhuǎn)向燈。

關(guān)鍵字: 汽車尾燈 電路 轉(zhuǎn)向燈

硬件的學(xué)習(xí)之路很長(zhǎng),但是會(huì)很有意思。同時(shí)記住一句話,在實(shí)驗(yàn)室里面弄硬件的,第一是保證不短路,第二是保證電容不要炸,同時(shí)保證別觸電就行,其他別慫。

關(guān)鍵字: 電路 電容 電子電路

上海2022年10月11日 /美通社/ -- 10月10日,明月鏡片正式官宣劉昊然成為品牌代言人。一個(gè)是中國(guó)鏡片領(lǐng)導(dǎo)品牌,通過(guò)科技創(chuàng)新引領(lǐng)了鏡片行業(yè)的發(fā)展;一個(gè)是新生代實(shí)力演員,憑借高票房作品贏得了觀眾的認(rèn)可。此次雙方攜...

關(guān)鍵字: PMC 控制 節(jié)點(diǎn) 藍(lán)光

基于電力電子設(shè)備的廣泛應(yīng)用是可能的,因?yàn)樗軌蛞宰罡咝蕦㈦娔苻D(zhuǎn)換成有用的形式,如熱、光、運(yùn)動(dòng)和聲音。電機(jī)驅(qū)動(dòng)器就是一個(gè)典型的例子,幾乎在每個(gè)行業(yè)都有應(yīng)用。超過(guò) 70% 的工業(yè)負(fù)載是電機(jī)負(fù)載,其中感應(yīng)電機(jī)占主要部分。因此...

關(guān)鍵字: AI 神經(jīng)網(wǎng)絡(luò) 電力電子

深圳2022年9月16日 /美通社/ -- 針對(duì)聯(lián)邦學(xué)習(xí)全局模型的版權(quán)保護(hù)問(wèn)題,微眾銀行AI團(tuán)隊(duì)聯(lián)合上海交通大學(xué)在人工智能學(xué)術(shù)期刊《IEEE模式分析與機(jī)器智能匯刊》(IEEE T-PAMI,IEEE Trans...

關(guān)鍵字: 模型 IP 神經(jīng)網(wǎng)絡(luò) IEEE

“快充”指的是網(wǎng)購(gòu)一族網(wǎng)上全國(guó)移動(dòng)、聯(lián)通、電信話費(fèi)、Q幣、各種游戲點(diǎn)卡等官方快速充值,商家都是用的自動(dòng)充值系統(tǒng),直接對(duì)應(yīng)的淘寶的接口,只要是買家付了款,不管掌柜在不在線,軟件都會(huì)7*24小時(shí)為您所填的號(hào)碼進(jìn)行自動(dòng)充值,1...

關(guān)鍵字: 超快 電路 燃油車

(全球TMT2022年9月5日訊)燧原科技在2022世界人工智能大會(huì)"算盡其用·定義AI算力中心新實(shí)踐"云端算力產(chǎn)業(yè)應(yīng)用論壇上正式發(fā)布云燧智算機(jī)(CloudBlazer POD)。云燧智算機(jī)是針對(duì)大規(guī)模、集約化人工智能...

關(guān)鍵字: 人工智能 數(shù)據(jù)中心 節(jié)點(diǎn) CPU

凝聚燧原科技兩代芯片研發(fā)與多個(gè)大規(guī)模人工智能算力中心工程實(shí)踐,面向大規(guī)模、集約化、綠色低碳數(shù)據(jù)中心建設(shè),云燧智算機(jī)(CloudBlazer POD)正式發(fā)布。 上海2022年9月3日 /美通社/ -- 燧原科技在202...

關(guān)鍵字: 人工智能 數(shù)據(jù)中心 節(jié)點(diǎn) TC

北京2022年9月2日 /美通社/ -- 近日,由CDCC中數(shù)智慧信息技術(shù)研究院主辦的2022第三屆中國(guó)數(shù)據(jù)中心綠色能源大會(huì)(以下簡(jiǎn)稱中國(guó)數(shù)據(jù)中心綠色能源大會(huì))在"六朝金陵,十里秦淮"的南京...

關(guān)鍵字: 數(shù)據(jù)中心 綠色能源 數(shù)字經(jīng)濟(jì) 節(jié)點(diǎn)

測(cè)試測(cè)量

28633 篇文章

關(guān)注

發(fā)布文章

編輯精選

技術(shù)子站

關(guān)閉