www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當(dāng)前位置:首頁 > 測試測量 > 測試測量
[導(dǎo)讀]現(xiàn)有的人臉檢測方法,對復(fù)雜光照環(huán)境下獲得的彩色人臉圖像的檢測效果仍不太理想。在仔細(xì)研究目前人臉檢測方法的基礎(chǔ)上,對基于膚色分割結(jié)合模板匹配的人臉檢測方法進(jìn)行改進(jìn),提出基于“光照預(yù)處理+膚色模型+模板匹配”的人臉檢測問題解決思路。實(shí)驗(yàn)結(jié)果表明,該方法對實(shí)際場景中正面和準(zhǔn)正面的人臉圖像,平均準(zhǔn)栓率達(dá)到84%,同時對光照變化不敏感,而且對姿態(tài)和表情的變化也具有較好的魯棒性。

0 引言
    在人臉檢測領(lǐng)域,人臉特征的選取是基礎(chǔ)與核心。目前主要的人臉檢測方法可以分為基于特征的方法和基于統(tǒng)計(jì)的方法兩大類?;谔卣鞯姆椒梢蕴幚磔^大尺度和視角變化的人臉檢測問題,但其最大的困難在于很難找到相對穩(wěn)定的特征,因?yàn)閳D像的顯示特征容易受到光照、噪聲等的影響;基于統(tǒng)計(jì)的方法可以避免特征提取和分析過程,但存在計(jì)算量大,以及非人臉樣本收集和樣本訓(xùn)練難的問題。
    為此,本文對基于膚色分割結(jié)合模板匹配的人臉檢測方法進(jìn)行了改進(jìn),提出基于“光照預(yù)處理+膚色模型+模板匹配”的人臉檢測解決思路,即在光照預(yù)處理的前提下,利用膚色特征建立膚色模型;根據(jù)膚色模型進(jìn)行膚色檢測和閾值分割;在對分割區(qū)域特征分析的基礎(chǔ)上,將篩選出的人臉候選區(qū)域與人臉模板相匹配;最后將匹配較好的區(qū)域在原圖像中用矩形框標(biāo)示出來。

1 膚色模型
   
人臉的膚色不依賴于面部的其他特征,對于人臉姿態(tài)和表情的變化不敏感,具有較好的穩(wěn)定性,而且明顯區(qū)別于大多數(shù)背景物體的顏色。大量實(shí)驗(yàn)證明,不同膚色的人臉對應(yīng)的色調(diào)是比較一致的,其區(qū)別主要在于灰度。人臉的膚色特征主要通過膚色模型來描述。膚色模型是在一定色彩空間描述膚色分布規(guī)律的數(shù)學(xué)模型。本文選用備受青睞的高斯模型。
1.1 色彩空間
   
一般說來,色調(diào)和飽和度相對亮度來說,是相互獨(dú)立的。在不同的光照條件下,雖然物體顏色的亮度會產(chǎn)生很大的差異,但是它的色度在很大范圍內(nèi)具有恒常性,基本保持不變。研究表明,人類的膚色在YCbCr色彩空間的分布相對比較集中(被稱為膚色的聚類特性),不同種族之間膚色的差異主要是由亮度引起,而與顏色屬性無關(guān)。利用此特性,將圖像像素分為膚色和非膚色像素兩類,這樣可以大大提高人臉檢測的效率和正確性。
    在YCbCr色彩空間中,Y表示亮度,Cb和Cr是顏色差別信號,代表色度。因此,本文的膚色模型只選用YCbCr色彩空間的Cb和Cr色度分量,并用這兩個分量建立色度分布圖。實(shí)驗(yàn)中,需要先將普遍采用RGB色彩空間描述的圖像轉(zhuǎn)換到Y(jié)CbCr色彩空間。
1.2 建立膚色樣本
   
建立膚色模型需要使用大量包含不同膚色、不同大小人臉的RGB圖像。本文從互聯(lián)網(wǎng)、人臉庫和日常的生活照中選用了100幅膚色各不相同的人臉圖像,然后從中裁剪出人臉皮膚區(qū)域的一小部分,作為膚色樣本。接著將其從RGB色彩空間轉(zhuǎn)換為YCrCb色彩空間。
    經(jīng)過色彩空間轉(zhuǎn)換之后,人臉圖像不可避免地會出現(xiàn)噪聲。本文采用滑動窗口為3×3的二維中值濾波器來去除椒鹽噪聲,并在速度和效果上都取得了很好的結(jié)果。
1.3 建立膚色模型
   
濾除噪聲后,先用二維高斯分布來描述這種Cb-Cr的色度分布,然后對膚色樣本進(jìn)行訓(xùn)練,以此得到一個分布中心,再根據(jù)所觀察的像素離該中心的遠(yuǎn)近來得到一個膚色的相似度。最后利用均值和方差計(jì)算得到高斯分布模型,這就是實(shí)驗(yàn)中的膚色模型。二維高斯分布的表達(dá)式為:
   

2 人臉檢測
2.1 光照預(yù)處理

    由于受外界光照環(huán)境的影響,尤其是光源顏色,采集來的彩色圖像經(jīng)常會發(fā)生彩色偏移。本文使用Gray World彩色均衡方法來消除這種彩色偏移。該方法首先通過圖像的R,G,B三個分量中各自的平均值avgR,avgG,avgB確定出圖像的平均灰度值avgGray,然后調(diào)整每個像素的R,G,B值,使得調(diào)整后圖像的R,G,B三個分量中各自的平均值都趨于平均灰度值avgGray。實(shí)驗(yàn)結(jié)果表明,消除彩色偏移能有效提高算
法的檢測率和準(zhǔn)確率。
2.2 類膚色檢測
   
本文算法最為關(guān)鍵的一步便是人體皮膚區(qū)域的粗檢測。檢測方法是計(jì)算圖像像素與膚色模型的相似度,這個值描述了像素與膚色的相似程度。相似度計(jì)算公式為:
   
    通過計(jì)算圖像中每個像素與膚色模型的相似度,生成一幅類膚色灰度圖像,如圖1所示。


2.3 閾值分割
   
由于人體皮膚區(qū)域的像素與膚色模型的相似程度較高,計(jì)算得到的相似度值就比較大,因此在類膚色灰度圖中,皮膚區(qū)域顯得比其他部分更亮。這樣一來,通過選取合適的閾值即可分割出膚色區(qū)域。
    本文實(shí)驗(yàn)選擇的閾值以0.1為間隔從0.65逐漸減小到0.05。通過對選擇的相鄰兩個閾值的圖像相減,可以找到分割區(qū)域數(shù)量變化最小的閾值取值點(diǎn),這個閾值就是最佳闞值。根據(jù)這個閾值,就可以將類膚色灰度圖轉(zhuǎn)換為二值圖。
    圖2為轉(zhuǎn)換后的二值圖。


2.4 區(qū)域特征分析
   
由于閾值分割得到的二值圖中包含多個類膚色區(qū)域,這就需要先對這些區(qū)域進(jìn)行標(biāo)記,以便逐個處理。為了不影響對人臉整體形狀的檢測,采用形態(tài)學(xué)操作對標(biāo)記后的膚色區(qū)域進(jìn)行特征分析,以決定該區(qū)域是否包含一個人臉。這些特征主要包括孔洞、質(zhì)心坐標(biāo)、方向角、面積和高寬比。
    由于人臉上包含有眼睛、眉毛、鼻子和一張嘴,因此在分割出來的人臉區(qū)域中至少包含一個孔洞,而且人臉的高寬比值通常接近1,這個特征參數(shù)就可以排除掉大部分的非人臉區(qū)域。實(shí)驗(yàn)中的高寬比值限定在0.6~1.2之間,當(dāng)檢測區(qū)域的高寬比值落在該區(qū)間時,則認(rèn)為該區(qū)域是一個人臉候選區(qū)域。

3 模板匹配
   
模板匹配就是將預(yù)先建立的人臉模板與篩選出來的人臉候選區(qū)域進(jìn)行相關(guān)性匹配。匹配時,首先根據(jù)候選區(qū)域的大小、質(zhì)心坐標(biāo)和方向角度調(diào)整人臉模板的尺寸、方向和位置,然后才進(jìn)行匹配。預(yù)先建立的人臉模板如圖3所示。首先用16個不同的人臉灰度圖像計(jì)算得到一張平均臉,然后從中分割出人臉的主要部分,作為實(shí)驗(yàn)中使用的人臉模板。


    模板匹配常用的一種測度為模板與原圖像對應(yīng)區(qū)域的誤差平方和。確定這個值的一種方法便是使用歸一化互相關(guān)系數(shù)(以下簡稱相關(guān)系數(shù))。
    兩個圖像矩陣的相關(guān)性匹配通過計(jì)算式(3)得到:
   
    經(jīng)過多次測試發(fā)現(xiàn),當(dāng)相關(guān)系數(shù)取值大約為0.6時,兩個矩陣匹配較好。如果人臉模板矩陣和人臉候選區(qū)域矩陣的相關(guān)系數(shù)是0.6或者更高,則認(rèn)為該區(qū)域包含一個人臉。測試完所有的膚色區(qū)域后,在原圖中用矩形框標(biāo)示檢測到的每個人臉。檢測結(jié)果如圖4所示。



4 結(jié)語
    實(shí)驗(yàn)中用包含有60個不同人臉(包括黑人、白人和黃色人種)的20幅圖像對算法進(jìn)行測試,其中相關(guān)系數(shù)和高寬比值都選擇最佳值。測試結(jié)果表明,本文算法對實(shí)際生活中人臉圖像的正確檢測率達(dá)到了84%,對姿態(tài)和表情同樣具有較高的魯棒性,基本上達(dá)到了預(yù)期的目標(biāo)。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動電源

在工業(yè)自動化蓬勃發(fā)展的當(dāng)下,工業(yè)電機(jī)作為核心動力設(shè)備,其驅(qū)動電源的性能直接關(guān)系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護(hù)是驅(qū)動電源設(shè)計(jì)中至關(guān)重要的兩個環(huán)節(jié),集成化方案的設(shè)計(jì)成為提升電機(jī)驅(qū)動性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機(jī) 驅(qū)動電源

LED 驅(qū)動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設(shè)備的使用壽命。然而,在實(shí)際應(yīng)用中,LED 驅(qū)動電源易損壞的問題卻十分常見,不僅增加了維護(hù)成本,還影響了用戶體驗(yàn)。要解決這一問題,需從設(shè)計(jì)、生...

關(guān)鍵字: 驅(qū)動電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動電源的公式,電感內(nèi)電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計(jì) 驅(qū)動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動汽車的核心技術(shù)之一是電機(jī)驅(qū)動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機(jī)驅(qū)動系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動汽車的動力性能和...

關(guān)鍵字: 電動汽車 新能源 驅(qū)動電源

在現(xiàn)代城市建設(shè)中,街道及停車場照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進(jìn)步,高亮度白光發(fā)光二極管(LED)因其獨(dú)特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動電源 LED

LED通用照明設(shè)計(jì)工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機(jī)重量也有所下降,所以,現(xiàn)在的LED驅(qū)動電源

關(guān)鍵字: LED 驅(qū)動電源 開關(guān)電源

LED驅(qū)動電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動電源
關(guān)閉