www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當(dāng)前位置:首頁(yè) > 智能硬件 > 人工智能AI
[導(dǎo)讀] 最近在嘗試將所有的機(jī)器學(xué)習(xí)與深度學(xué)習(xí)的模型用Python來實(shí)現(xiàn),大致的學(xué)習(xí)思路如下: 分類器 回歸與預(yù)測(cè) 時(shí)間序列 所有的模型先用 Python語言實(shí)現(xiàn),然后用T

最近在嘗試將所有的機(jī)器學(xué)習(xí)與深度學(xué)習(xí)的模型用Python來實(shí)現(xiàn),大致的學(xué)習(xí)思路如下:

分類器

回歸與預(yù)測(cè)

時(shí)間序列

所有的模型先用 Python語言實(shí)現(xiàn),然后用Tensorflow的實(shí)現(xiàn)。
 

1 數(shù)據(jù)集

本文開始以UCI中的Iris數(shù)據(jù)集作為訓(xùn)練數(shù)據(jù)集和測(cè)試時(shí)間集。該數(shù)據(jù)集給出了花萼(sepal)的長(zhǎng)度和寬度以及花瓣(petal)的長(zhǎng)度和寬度,根據(jù)這4個(gè)特征訓(xùn)練模型,預(yù)測(cè)花的類別(Iris Setosa,Iris Versicolour,Iris Virginica)。
# 包引入
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import os
df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data', header=None)
df.head(10)

1.1 數(shù)據(jù)處理

我們提取前100個(gè)樣本(50個(gè)Iris Setosa和50個(gè)Iris Versicolour),并將不同的樣本類別標(biāo)注為1(Iris Versicolour)和-1(Iris Setosa);然后,將花萼的長(zhǎng)度和花瓣的長(zhǎng)度作為特征。大致處理如下:
y = df.iloc[0:100, 4].values # 預(yù)測(cè)標(biāo)簽向量
y = np.where(y == 'Iris-setosa', -1, 1)
X = df.iloc[0:100, [0,2]].values # 輸入特征向量

# 使用散點(diǎn)圖可視化樣本
plt.scatter(X[:50, 0], X[:50,1], color='red', marker='o', label='setosa')
plt.scatter(X[50:100, 0], X[50:100, 1], color='blue', marker='x', label='versicolor')
plt.xlabel('petal length')
plt.ylabel('sepal length')
plt.legend(loc='upper left')
plt.show

2 模型

2.1 神經(jīng)網(wǎng)絡(luò)模型

2.1.1 模型實(shí)現(xiàn)

我們可以將該問題轉(zhuǎn)化為一個(gè)二分類的任務(wù),因此,可以將1與-1作為類別標(biāo)簽。從而激活函數(shù)可以表示如下:

大致的模型結(jié)構(gòu)如下:


class Perceptron(object):
"""
Parameters
------------
eta : float
學(xué)習(xí)率 (between 0.0 and 1.0)
n_iter : int
迭代次數(shù)
Attributes
-----------
w_ : 1d-array
權(quán)重
errors_ : list
誤差
"""
def __init__(self, eta=0.01, n_iter=10):
self.eta = eta
self.n_iter = n_iter

def fit(self, X, y):
self.w_ = np.zeros(1 + X.shape[1])
self.errors_ = []

for _ in range(self.n_iter):
errors = 0
for xi, target in zip(X, y):
update = self.eta * (target - self.predict(xi))
self.w_[1:] += update * xi
self.w_[0] += update
errors += int(update != 0.0)
self.errors_.append(errors)
return self

def net_input(self, X):
return np.dot(X, self.w_[1:]) + self.w_[0]

def predict(self, X):
return np.where(self.net_input(X) >= 0.0, 1, -1)

2.1.2 模型訓(xùn)練
ppn = Perceptron(eta=0.1, n_iter=10)
ppn.fit(X, y)

2.1.3 模型驗(yàn)證

誤差分析
plt.plot(range(1, len(ppn.errors_) + 1), ppn.errors_, marker='o')
plt.xlabel('Epochs')
plt.ylabel('Number of misclassificaTIons')
plt.show()

可視化分類器
from matplotlib.colors import ListedColormap
def plot_decision_regions(X, y, classifier, resoluTIon=0.01):
"""
可視化分類器
:param X: 樣本特征向量
:param y: 樣本標(biāo)簽向量
:param classifier: 分類器
:param resoluTIon: 殘差
:return:
"""

markers = ('s', 'x', 'o', '^', 'v')
colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
cmap = ListedColormap(colors[:len(np.unique(y))])

x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resoluTIon), np.arange(x2_min, x2_max, resolution))

Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
Z = Z.reshape(xx2.min(), xx2.max())

plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)
plt.xlim(xx1.min(), xx1.max())
plt.ylim(xx2.min(), xx2.max())

for idx, cl in enumerate(np.unique(y)):
plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1], alpha=0.8, c=cmap(idx), marker=markers[idx], label=cl)

# 調(diào)用可視化分類器函數(shù)
plot_decision_regions(X, y, classifier=ppn)
plt.xlabel('sepal length [cm]')
plt.ylabel('petal length [cm]')
plt.legend(loc='upper left')
plt.show()

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動(dòng)電源

在工業(yè)自動(dòng)化蓬勃發(fā)展的當(dāng)下,工業(yè)電機(jī)作為核心動(dòng)力設(shè)備,其驅(qū)動(dòng)電源的性能直接關(guān)系到整個(gè)系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動(dòng)勢(shì)抑制與過流保護(hù)是驅(qū)動(dòng)電源設(shè)計(jì)中至關(guān)重要的兩個(gè)環(huán)節(jié),集成化方案的設(shè)計(jì)成為提升電機(jī)驅(qū)動(dòng)性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機(jī) 驅(qū)動(dòng)電源

LED 驅(qū)動(dòng)電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個(gè)照明設(shè)備的使用壽命。然而,在實(shí)際應(yīng)用中,LED 驅(qū)動(dòng)電源易損壞的問題卻十分常見,不僅增加了維護(hù)成本,還影響了用戶體驗(yàn)。要解決這一問題,需從設(shè)計(jì)、生...

關(guān)鍵字: 驅(qū)動(dòng)電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動(dòng)電源的公式,電感內(nèi)電流波動(dòng)大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計(jì) 驅(qū)動(dòng)電源

電動(dòng)汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動(dòng)汽車的核心技術(shù)之一是電機(jī)驅(qū)動(dòng)控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機(jī)驅(qū)動(dòng)系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動(dòng)汽車的動(dòng)力性能和...

關(guān)鍵字: 電動(dòng)汽車 新能源 驅(qū)動(dòng)電源

在現(xiàn)代城市建設(shè)中,街道及停車場(chǎng)照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進(jìn)步,高亮度白光發(fā)光二極管(LED)因其獨(dú)特的優(yōu)勢(shì)逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動(dòng)電源 LED

LED通用照明設(shè)計(jì)工程師會(huì)遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動(dòng)電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動(dòng)電源的電磁干擾(EMI)問題成為了一個(gè)不可忽視的挑戰(zhàn)。電磁干擾不僅會(huì)影響LED燈具的正常工作,還可能對(duì)周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動(dòng)電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機(jī)重量也有所下降,所以,現(xiàn)在的LED驅(qū)動(dòng)電源

關(guān)鍵字: LED 驅(qū)動(dòng)電源 開關(guān)電源

LED驅(qū)動(dòng)電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動(dòng)LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動(dòng)電源
關(guān)閉