www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當前位置:首頁 > 消費電子 > 消費電子
[導讀]將高頻能量從同軸連接器傳 遞到印刷電路板(PCB)的過程通常被稱為信號注入,它的特征難以描述。能量傳遞的效率會因電路結構不同而差異懸殊。PCB 材料及其厚度和工作頻率范圍

將高頻能量從同軸連接器傳 遞到印刷電路板(PCB)的過程通常被稱為信號注入,它的特征難以描述。能量傳遞的效率會因電路結構不同而差異懸殊。PCB 材料及其厚度和工作頻率范圍等因素,以及連接器設計及其與電路材料的相互作用都會影響性能。通過對不同信號注入設置的了解,以及對一些射頻微波信號注入方 法的優(yōu)化案例的回顧,性能可以得到提升。

實現(xiàn)有效的信號注入與設計相關,一般寬帶優(yōu)化比窄帶更有挑戰(zhàn)性。通常高頻注入隨著頻率升高而更加困難,同時也可能隨電路材料的厚度增加,電路結構的復雜性增加而有更多問題。

信號注入設計與優(yōu)化

從同軸電纜和連接器到微帶PCB 的信號注入如圖1 所示。穿過同軸電纜和連接器的電磁(EM)場分布呈圓柱形,而PCB 內(nèi)的EM 場分布則是平面或矩形。從一種傳播介質(zhì)進入另一種介質(zhì),場分布會改變以適應新環(huán)境,從而產(chǎn)生異常。改變?nèi)Q于介質(zhì)類型;例如,信號注入是從同軸電纜和連接 器到微帶、接地共面波導(GCPW),還是帶線。同軸電纜連接器的類型也起著重要作用。

 

 

優(yōu)化涉及幾個變量。了解同軸電纜/ 連接器內(nèi)EM 場分布很有用,但還必須將接地回路視為傳播介質(zhì)的一部分。它對實現(xiàn)從一種傳播介質(zhì)到另一種傳播介質(zhì)的平穩(wěn)阻抗轉變通常是有幫助的。了解阻抗不連續(xù)點處的容 抗和感抗讓我們能夠理解電路表現(xiàn)。如果能夠進行三維(3D)EM 仿真,就可以觀察到電流密度分布。此外,最好將與輻射損耗有關的實際情況也考慮其中。

雖然信號發(fā)射連接器和PCB 之間的接地回路可能看上去不成問題,從連接器到PCB的接地回路非常連續(xù),但并不總是如此。連接器的金屬和PCB 之間通常存在著很小的表面電阻。連接不同部件的焊店和這些部件的金屬的電導率也有很小的差異。在RF 和微波頻率較低時,這些小差異的影響通常較小,但是頻率較高時對性能的影響很大。地回流路徑的實際長度會影響利用給定的連接器和PCB 組合能夠實現(xiàn)的傳輸質(zhì)量。

如圖2a 所示,在電磁波能量從連接器引腳傳遞到微帶PCB 的信號導線時,回到連接器外殼的接地回路對于厚微帶傳輸線來說可能會太長。采用介電常數(shù)較高的PCB材料會增加接地回路的電長度,從而使問題惡化。通路延 長會引發(fā)具有頻率相關性的問題,進而產(chǎn)生局部的相速和電容差異。二者都與變換區(qū)內(nèi)的阻抗相關,并且會對其產(chǎn)生影響,從而產(chǎn)生回波損耗差異。理想情況下,接 地回路的長度應最小化,使得信號注入?yún)^(qū)不存在阻抗異常。請注意,圖2a 所示之連接器的接地點只存在于電路底部,而這是最糟糕的情況。很多RF 連接器的接地引腳與信號在同一層。這種情況下,PCB 上也會設計接地焊盤在那里。

圖2b 展示了接地共面波導轉微帶信號注入電路,在這里,電路的主體是微帶,但信號注入?yún)^(qū)是接地共面波導(GCPW)。共面發(fā)射微帶很有用,因為它能夠將接地回路 最小化,并且還具有其它有用特性。如果使用信號導線兩邊均有接地引腳的連接器,那么接地引腳間距對性能有重大影響。已經(jīng)證明該距離影響頻率響應。

 

 

在利用基于羅杰斯公司10mil 厚RO4350B 層壓板的共面波導轉微帶微帶進行實驗時,使用了共面波導口接地間距不同,但其他部分類似的連接器(見圖3)。連接器A 的接地間隔約為0.030",而連接器B 的接地間隔為0.064"。這兩種情況下,連接器發(fā)射到同一電路上。

 

[!--empirenews.page--]

 

x 軸表示頻率,每格5 GHz。微波頻率較低(< 5 GHz)時,性能相當,但頻率高于15 GHz 時,接地間隔較大的電路性能變差。連接器類似,雖然這2 種型號的引腳直徑稍有不同,連接器B 的引腳直徑較大并且設計用于較厚的PCB 材料。這也可能會導致性能差異。

簡單且有效的信號注入優(yōu)化方法就是將信號發(fā)射區(qū)內(nèi)的阻抗失配最小化。阻抗曲線上升基本上是由于電感增加,而 阻抗曲線下降則是因為電容增加。對于圖2a 所示之厚微帶傳輸線(假設PCB 材料的介電常數(shù)較低,約為3.6),導線較寬- 比連接器的內(nèi)導體寬得多。由于電路導線和連接器導線的尺寸差異較大,所以轉變時會出現(xiàn)很強的容性突變。通常可以通過將電路導線逐漸變細以便減小它與同軸連 接器引腳連接的地方形成的尺寸差距,來減小容性突變。將PCB導線變窄會增加它的感性(或者降低容性,從而抵消阻抗曲線內(nèi)的容性突變。

必須考慮對不同頻率的影響。較長的漸變線會對低頻產(chǎn)更強的感性。例如,如果在低頻回損較差,同時有一個容性阻抗尖峰,此時使用較長的漸變線就比較合適。反之,較短的漸變線對高頻的作用就比較大。

對于共面結構,相鄰接地面靠近時會增加電容。通常,通過對漸變信號線和相鄰接地面間隔大小的調(diào)節(jié),來在相應頻段調(diào)節(jié)信號注入?yún)^(qū)的感性容性。某些情況下,共面 波導的相鄰接地焊盤在漸變線的一段上較寬,以調(diào)節(jié)較低的頻段。然后,間距在漸變線較寬的部分變窄,變窄的部分長度不長,以影響較高頻段。一般來說,導線漸 變線變窄會增加感性。漸變線的長度影響頻率響應。改變共面波導的鄰近接地焊盤能夠改變?nèi)菪?,焊盤間距之所以能夠改變頻響,其中對容性的改變起了主要作用。

實例

圖 4 提供了一個簡單實例。圖4a 是一根具有狹長漸變線的粗微帶傳輸線。漸變線在板邊處寬0.018"(0.46 mm),長0.110"(2.794 mm),最后變成了寬0.064"(1.626 mm)的50 Ω 線寬。在圖4b 和4c 中,漸變線的長度變短。選用了現(xiàn)場可壓接終端連接器,未焊接,所以每種情況均使用同一內(nèi)導體。微帶傳輸線長2"(50.8 mm),加工在厚30mil(0.76 mm)的RO4350B ?微波電路層壓板上,介電常數(shù)為3.66。在圖4a 中,藍色曲線代表插入損耗(S21),波動很多。相反,圖4c 內(nèi)S21 的波動數(shù)量最少。這些曲線表明,漸變線越短,性能越高。

 

 

 

 

也 許圖4 中最能說明問題的曲線表明了電纜、連接器和電路的阻抗(綠色曲線)。圖4a 中大的正向波峰代表連接著同軸電纜的連接器端口1,曲線上的另一個峰代表電路另一端的連接器。阻抗曲線上的波動由于漸變線的縮短而減小。阻抗匹配的改善是 因為信號注入?yún)^(qū)的漸變線變寬,變窄;變寬的漸變線降低了感性。

我們能夠從一個優(yōu)秀的信號注入設計2 中了解更多注入?yún)^(qū)域電路尺寸的信息,這個電路也使用同樣的板材和同樣的厚度。一個共面波導轉微帶電路,通過利用圖4 的經(jīng)驗,產(chǎn)生了比圖4 更好的效果。最明顯的改善是消除了阻抗曲線中的感性峰,事實上,這是部分感性峰和容性谷造成的。使用正確的漸變線是感性峰降到最低,同時使用注入?yún)^(qū)的共面 接地焊盤耦合來增加感性。圖5 的插入損耗曲線比圖4c 平滑,回波損耗曲線也有所改善。對于采用介電常數(shù)較高或厚度不同的PCB 材料的微帶電路或者采用不同類型的連接器的微帶電路,圖4 所示實例的結果不同。

信號注入是一個很復雜的問題,受很多不同因素的影響。該實例和這些指導方針旨在幫助設計者了解基本原理。

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: 驅動電源

在工業(yè)自動化蓬勃發(fā)展的當下,工業(yè)電機作為核心動力設備,其驅動電源的性能直接關系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅動電源設計中至關重要的兩個環(huán)節(jié),集成化方案的設計成為提升電機驅動性能的關鍵。

關鍵字: 工業(yè)電機 驅動電源

LED 驅動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設備的使用壽命。然而,在實際應用中,LED 驅動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設計、生...

關鍵字: 驅動電源 照明系統(tǒng) 散熱

根據(jù)LED驅動電源的公式,電感內(nèi)電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關鍵字: LED 設計 驅動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動汽車的核心技術之一是電機驅動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅動系統(tǒng)中的關鍵元件,其性能直接影響到電動汽車的動力性能和...

關鍵字: 電動汽車 新能源 驅動電源

在現(xiàn)代城市建設中,街道及停車場照明作為基礎設施的重要組成部分,其質(zhì)量和效率直接關系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關鍵字: 發(fā)光二極管 驅動電源 LED

LED通用照明設計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關鍵字: LED 驅動電源 功率因數(shù)校正

在LED照明技術日益普及的今天,LED驅動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關鍵字: LED照明技術 電磁干擾 驅動電源

開關電源具有效率高的特性,而且開關電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現(xiàn)在的LED驅動電源

關鍵字: LED 驅動電源 開關電源

LED驅動電源是把電源供應轉換為特定的電壓電流以驅動LED發(fā)光的電壓轉換器,通常情況下:LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: LED 隧道燈 驅動電源
關閉