大數(shù)據(jù):數(shù)據(jù)科學(xué)的陷阱與缺陷
掃描二維碼
隨時(shí)隨地手機(jī)看文章
最近看新聞,發(fā)現(xiàn)數(shù)據(jù)科學(xué)專業(yè)已經(jīng)是北京大學(xué)高考入學(xué)門檻較高的專業(yè)了,其實(shí)"Data Science" 這個(gè)詞性感了快十年了,對(duì)互聯(lián)網(wǎng)行業(yè)而言,相當(dāng)于性感了一個(gè)世紀(jì)。
從“數(shù)據(jù)說話”,”DT 時(shí)代”,到 “數(shù)據(jù)中臺(tái)”,“數(shù)據(jù)驅(qū)動(dòng)(Data Drive/Data Driven)”,數(shù)據(jù)體系的不斷演進(jìn)正在持續(xù)的改變大家的工作與決策方式;正在不斷的革新大家的思維方式;同時(shí)也產(chǎn)生了新的商業(yè)邏輯,新的發(fā)展機(jī)會(huì)。
1976 年,Pascal 作者 Nikalus Wirth 曰:Algorithms + Data Structures = Programs.
就像之前的“SOA”,“云計(jì)算”等概念一樣,目前數(shù)據(jù)科學(xué)自身的概念還在不斷的變革,各家公司的實(shí)踐者們一邊摸索,一邊獲利;一邊總結(jié),一邊布道;當(dāng)然同時(shí)還參雜著很多湊熱鬧的同志把概念折騰的更加模糊。所以數(shù)據(jù)科學(xué)本身的能力邊界,方法論體系,最佳實(shí)踐等等還沒有完善的建立起來,有很多問題沒有辦法很好的回答。由此就會(huì)產(chǎn)生一些迷信和誤會(huì),”強(qiáng)行數(shù)據(jù)“,”隨意數(shù)據(jù)“,”政治正確數(shù)據(jù)“等等情況比較常見, 無論是實(shí)際的操作層面,還是方法層面,都存在著一些不小的誤會(huì)。這也是我打算總結(jié)一下在數(shù)據(jù)科學(xué)實(shí)踐中存在的陷阱與缺陷的緣由。
這篇分享是根據(jù)我自己的工作經(jīng)驗(yàn),和對(duì)相關(guān)資深同事的訪談總結(jié)而成。它的正確性受限于我個(gè)人的認(rèn)知水平和目前行業(yè)的發(fā)展水平,它整理了一些目前可能存在的問題,但未必是長久的道理。希望大家讀的時(shí)候批判性的看待。拋磚引玉,如果有不同想法歡迎大家跟我隨時(shí)溝通與驗(yàn)證,結(jié)論本身也可以隨時(shí)更新。
網(wǎng)易嚴(yán)選的很多業(yè)務(wù),比如風(fēng)控業(yè)務(wù),核心驅(qū)動(dòng)力是數(shù)據(jù)及算法。我們?cè)陲L(fēng)控業(yè)務(wù)起步的時(shí)候就建立了數(shù)據(jù)算法驅(qū)動(dòng)風(fēng)控的方法體系,所以能保證很小的團(tuán)隊(duì)(3 個(gè)人)來支撐嚴(yán)選幾十個(gè)內(nèi)外部風(fēng)險(xiǎn)場景,每天執(zhí)行百萬次風(fēng)險(xiǎn)決策。當(dāng)然,這是數(shù)據(jù)驅(qū)動(dòng)自動(dòng)決策 / 智能決策帶來的力量。成功的美好,或許會(huì)讓你按耐不住的想把很多業(yè)務(wù)運(yùn)轉(zhuǎn)方式轉(zhuǎn)型過來,但遺憾的是,數(shù)據(jù)質(zhì)量保障的缺失會(huì)讓這一切變成隨時(shí)會(huì)倒塌的空中樓閣!事實(shí)上,絕大部分組織對(duì)數(shù)據(jù)質(zhì)量的理解 支撐不了更加自動(dòng)和智能的決策場景。強(qiáng)行轉(zhuǎn)型與減員增效會(huì)讓他們?cè)痉€(wěn)定的業(yè)務(wù)接近崩潰。
嚴(yán)選風(fēng)控出現(xiàn)過幾次大的故障都跟數(shù)據(jù)質(zhì)量緊密相關(guān)。今年 8 月份的時(shí)候,風(fēng)控在執(zhí)行每周誤判巡檢的時(shí)候發(fā)現(xiàn)整體疑似誤判率增加了 4 倍。最終定位原因是設(shè)備號(hào)相關(guān)的日志內(nèi)容有些異常。從而導(dǎo)致了相當(dāng)一部分用戶的行為(簽到操作)被錯(cuò)誤的執(zhí)行了攔截。
這是一個(gè)很有意思的案例。一些關(guān)鍵的決策:比如用戶是不是壞人?某個(gè)商品要采購多少量?可能會(huì)依賴于很不被重視的某個(gè)線上日志的一小部分內(nèi)容。我們的整個(gè)質(zhì)量保障體系很難把視角投入到某個(gè)具體應(yīng)用的某個(gè)日志字段在高壓力下會(huì)不會(huì)出錯(cuò)?在傳統(tǒng)的應(yīng)用服務(wù)質(zhì)量保障理念里,日志字段的某個(gè)偶爾的小錯(cuò)誤,沒人會(huì)把它當(dāng)作 Bug,開發(fā)人員更不會(huì)去關(guān)注。但如果你一旦把 數(shù)據(jù)當(dāng)作了生產(chǎn)資料,如果我們不對(duì)應(yīng)用質(zhì)量保障的理念和工具進(jìn)行革新,你的大量的數(shù)據(jù)分析報(bào)告,訓(xùn)練好的算法模型,做出的決策可能很不可靠,因?yàn)槟愕纳a(chǎn)資料本身就是垃圾,而古語有言:Garbage in , garbage out。
還有一個(gè)驚人的現(xiàn)狀是,大量用于生產(chǎn)數(shù)據(jù)的復(fù)雜 SQL 并沒有進(jìn)行真正的測(cè)試,甚至,大量的數(shù)據(jù)系統(tǒng)并不存在一個(gè)所謂的測(cè)試環(huán)境。我們很難像測(cè)試線上服務(wù)(比如訂單系統(tǒng))那樣去測(cè)試數(shù)據(jù)生產(chǎn)過程的正確性。那么這樣通過幾萬行,甚至幾十萬行(嚴(yán)選)SQL 生產(chǎn)出來的數(shù)據(jù)到底能不能用?這個(gè)問題其實(shí)很難回答。
數(shù)據(jù)的可靠性是組織在轉(zhuǎn)型數(shù)據(jù)驅(qū)動(dòng)過程中一個(gè)非常大的陷阱。
大家都在討論數(shù)據(jù)質(zhì)量的重要性,但是內(nèi)心又默默覺得這個(gè)事情比較低級(jí)。因此,我們很少見到有團(tuán)隊(duì)會(huì)把大量聰明的大腦投入到數(shù)據(jù)質(zhì)量的保障上。
除了資源投入的缺失,很多數(shù)據(jù)團(tuán)隊(duì)對(duì)數(shù)據(jù)質(zhì)量的認(rèn)知也是各不相同。我曾經(jīng)跟一位在數(shù)據(jù)行業(yè)從業(yè) 15 年,為某知名公司數(shù)據(jù)體系做出巨大貢獻(xiàn)的前輩做過一次深入的溝通,聊起數(shù)據(jù)質(zhì)量,”你覺得數(shù)據(jù)質(zhì)量是什么?“ 他的回答是:“數(shù)據(jù)質(zhì)量,真正需要考慮的是指標(biāo)一致性。”。瞧瞧,就算是非常資深的同行,他的認(rèn)知還是不夠完整,按他對(duì)數(shù)據(jù)質(zhì)量的理解,數(shù)據(jù)的支撐能做到報(bào)表給人看,這個(gè)層面就很完美了,要落地到戰(zhàn)術(shù)層,落地到線上自動(dòng)決策基本不可行(因?yàn)閿?shù)據(jù)質(zhì)量的故障難以像線上程序故障一樣快速修復(fù),它是一個(gè)持續(xù)污染的過程)。
數(shù)據(jù)做為智能決策的輸入,是動(dòng)態(tài)變化的。它沒法像代碼的依賴那樣做靜態(tài)分析,它的依賴層次動(dòng)態(tài)而不穩(wěn)定。