揭秘:大數(shù)據(jù)作用與處理過程
有人把數(shù)據(jù)比喻為蘊藏能量的煤礦。煤炭按照性質(zhì)有焦煤、無煙煤、肥煤、貧煤等分類,而露天煤礦、深山煤礦的挖掘成本又不一樣。與此類似,大數(shù)據(jù)并不在“大”,而在于“有用”。大數(shù)據(jù)是指無法在一定時間內(nèi)用常規(guī)軟件工具對其內(nèi)容進行抓取、管理和處理的數(shù)據(jù)集合。
大數(shù)據(jù)技術,是指從各種各樣類型的數(shù)據(jù)中,快速獲得有價值信息的能力。適用于大數(shù)據(jù)的技術,包括大規(guī)模并行處理(MPP)數(shù)據(jù)庫,數(shù)據(jù)挖掘電網(wǎng),分布式文件系統(tǒng),分布式數(shù)據(jù)庫,云計算平臺,互聯(lián)網(wǎng),和可擴展的存儲系統(tǒng)。
大數(shù)據(jù)的特點
一、數(shù)據(jù)體量巨大。百度資料表明,其新首頁導航每天需要提供的數(shù)據(jù)超過1.5PB(1PB=1024TB),這些數(shù)據(jù)如果打印出來將超過5千億張A4紙。有資料證實,到目前為止,人類生產(chǎn)的所有印刷材料的數(shù)據(jù)量僅為200PB。
二、數(shù)據(jù)類型多樣?,F(xiàn)在的數(shù)據(jù)類型不僅是文本形式,更多的是圖片、視頻、音頻、地理位置信息等多類型的數(shù)據(jù),個性化數(shù)據(jù)占絕對多數(shù)。
三、處理速度快。數(shù)據(jù)處理遵循“1秒定律”,可從各種類型的數(shù)據(jù)中快速獲得高價值的信息。
四、價值密度低。以視頻為例,一小時的視頻,在不間斷的監(jiān)控過程中,可能有用的數(shù)據(jù)僅僅只有一兩秒。
大數(shù)據(jù)的處理過程
大數(shù)據(jù)采集
大數(shù)據(jù)的采集是指利用多個數(shù)據(jù)庫來接收發(fā)自客戶端(Web、App或者傳感器形式等)的數(shù)據(jù),并且用戶可以通過這些數(shù)據(jù)庫來進行簡單的查詢和處理工作。比如,電商會使用傳統(tǒng)的關系型數(shù)據(jù)庫MySQL和Oracle等來存儲每一筆事務數(shù)據(jù),除此之外,Redis和MongoDB這樣的NoSQL數(shù)據(jù)庫也常用于數(shù)據(jù)的采集。
在大數(shù)據(jù)的采集過程中,其主要特點和挑戰(zhàn)是并發(fā)數(shù)高,因為同時有可能會有成千上萬的用戶來進行訪問和操作,比如火車票售票網(wǎng)站和淘寶,它們并發(fā)的訪問量在峰值時達到上百萬,所以需要在采集端部署大量數(shù)據(jù)庫才能支撐。并且如何在這些數(shù)據(jù)庫之間進行負載均衡和分片的確是需要深入的思考和設計。
大數(shù)據(jù)統(tǒng)計/分析
統(tǒng)計與分析主要利用分布式數(shù)據(jù)庫,或者分布式計算集群來對存儲于其內(nèi)的海量數(shù)據(jù)進行普通的分析和分類匯總等,以滿足大多數(shù)常見的分析需求,在這方面,一些實時性需求會用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存儲Infobright等,而一些批處理,或者基于半結構化數(shù)據(jù)的需求可以使用Hadoop。
統(tǒng)計與分析這部分的主要特點和挑戰(zhàn)是分析涉及的數(shù)據(jù)量大,其對系統(tǒng)資源,特別是I/O會有極大的占用。
大數(shù)據(jù)挖掘
與前面統(tǒng)計和分析過程不同的是,數(shù)據(jù)挖掘一般沒有什么預先設定好的主題,主要是在現(xiàn)有數(shù)據(jù)上面進行基于各種算法的計算,從而起到預測(Predict)的效果,從而實現(xiàn)一些高級別數(shù)據(jù)分析的需求。比較典型算法有用于聚類的Kmeans、用于統(tǒng)計學習的SVM和用于分類的NaiveBayes,主要使用的工具有Hadoop的Mahout等。該過程的特點和挑戰(zhàn)主要是用于挖掘的算法很復雜,并且計算涉及的數(shù)據(jù)量和計算量都很大,常用數(shù)據(jù)挖掘算法都以單線程為主。
大數(shù)據(jù)導入/預處理
雖然采集端本身會有很多數(shù)據(jù)庫,但是如果要對這些海量數(shù)據(jù)進行有效的分析,還是應該將這些來自前端的數(shù)據(jù)導入到一個集中的大型分布式數(shù)據(jù)庫,或者分布式存儲集群,并且可以在導入基礎上做一些簡單的清洗和預處理工作。也有一些用戶會在導入時使用來自Twitter的Storm來對數(shù)據(jù)進行流式計算,來滿足部分業(yè)務的實時計算需求。
導入與預處理過程的特點和挑戰(zhàn)主要是導入的數(shù)據(jù)量大,每秒鐘的導入量經(jīng)常會達到百兆,甚至千兆級別。
大數(shù)據(jù)的作用有什么用?
一、對大數(shù)據(jù)的處理分析正成為新一代信息技術融合應用的結點。移動互聯(lián)網(wǎng)、物聯(lián)網(wǎng)、社交網(wǎng)絡、數(shù)字家庭、電子商務等是新一代信息技術的應用形態(tài),這些應用不斷產(chǎn)生大數(shù)據(jù)。云計算為這些海量、多樣化的大數(shù)據(jù)提供存儲和運算平臺。通過對不同來源數(shù)據(jù)的管理、處理、分析與優(yōu)化,將結果反饋到上述應用中,將創(chuàng)造出巨大的經(jīng)濟和社會價值。大數(shù)據(jù)具有催生社會變革的能量。但釋放這種能量,需要嚴謹?shù)臄?shù)據(jù)治理、富有洞見的數(shù)據(jù)分析和激發(fā)管理創(chuàng)新的環(huán)境。
二、大數(shù)據(jù)是信息產(chǎn)業(yè)持續(xù)高速增長的新引擎。面向大數(shù)據(jù)市場的新技術、新產(chǎn)品、新服務、新業(yè)態(tài)會不斷涌現(xiàn)。在硬件與集成設備領域,大數(shù)據(jù)將對芯片、存儲產(chǎn)業(yè)產(chǎn)生重要影響,還將催生一體化數(shù)據(jù)存儲處理服務器、內(nèi)存計算等市場。在軟件與服務領域,大數(shù)據(jù)將引發(fā)數(shù)據(jù)快速處理分析、數(shù)據(jù)挖掘技術和軟件產(chǎn)品的發(fā)展。
三、大數(shù)據(jù)利用將成為提高核心競爭力的關鍵因素。各行各業(yè)的決策正在從“業(yè)務驅動”轉變“數(shù)據(jù)驅動”。對大數(shù)據(jù)的分析可以使零售商實時掌握市場動態(tài)并迅速做出應對;可以為商家制定更加精準有效的營銷策略提供決策支持;可以幫助企業(yè)為消費者提供更加及時和個性化的服務;在醫(yī)療領域,可提高診斷準確性和藥物有效性;在公共事業(yè)領域,大數(shù)據(jù)也開始發(fā)揮促進經(jīng)濟發(fā)展、維護社會穩(wěn)定等方面的重要作用。
四、大數(shù)據(jù)時代科學研究的方法手段將發(fā)生重大改變。例如,抽樣調(diào)查是社會科學的基本研究方法。在大數(shù)據(jù)時代,可通過實時監(jiān)測、跟蹤研究對象在互聯(lián)網(wǎng)上產(chǎn)生的海量行為數(shù)據(jù),進行挖掘分析,揭示出規(guī)律性的東西,提出研究結論和對策。