www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當前位置:首頁 > 電源 > 功率器件
[導讀]1 引言MOSFET憑開關速度快、導通電阻低等優(yōu)點在開關電源及電機驅(qū)動等應用中得到了廣泛應用。要想使MOSFET在應用中充分發(fā)揮其性能,就必須設計一個適合應用的最優(yōu)驅(qū)動電路和

1 引言

MOSFET憑開關速度快、導通電阻低等優(yōu)點在開關電源及電機驅(qū)動等應用中得到了廣泛應用。要想使MOSFET在應用中充分發(fā)揮其性能,就必須設計一個適合應用的最優(yōu)驅(qū)動電路和參數(shù)。在應用中MOSFET一般工作在橋式拓撲結(jié)構(gòu)模式下,如圖1所示。由于下橋MOSFET驅(qū)動電壓的參考點為地,較容易設計驅(qū)動電路,而上橋的驅(qū)動電壓是跟隨相線電壓浮動的,因此如何很好地驅(qū)動上橋MOSFET成了設計能否成功的關鍵。半橋驅(qū)動芯片由于其易于設計驅(qū)動電路、外圍元器件少、驅(qū)動能力強、可靠性高等優(yōu)點在MOSFET驅(qū)動電路中得到廣泛應用。

2 橋式結(jié)構(gòu)拓撲分析

圖1所示為驅(qū)動三相直流無刷電機的橋式電路,其中LPCB、 LS、LD為直流母線和相線的引線電感,電機為三相Y型直流無刷電機,其工作原理如下。

 

 

直流無刷電機通過橋式電路實現(xiàn)電子換相,電機工作模式為三相六狀態(tài),MOSFET導通順序為Q1Q5→Q1Q6→Q2Q6→Q2Q4→Q3Q4→Q3Q5。

系統(tǒng)通過調(diào)節(jié)上橋MOSFET的PWM占空比來實現(xiàn)速度調(diào)節(jié)。Q1、Q5導通時,電流(Ion)由VDD經(jīng)Q1、電機線圈、Q5流至地線,電機AB相通電。Q1關閉、Q5導通時,電流經(jīng)過Q5,Q4續(xù)流(IF),電機線圈中的電流基本維持不變。Q1再次開通時,由于Q3體二極管的電荷恢復過程,體二極管不能很快關斷,因此體二極管中會有反向恢復電流(Irr)流過。由于Irr的變化很快,因此在Irr回路中產(chǎn)生很高的di/dt。

3 半橋驅(qū)動電路工作原理

圖2所示為典型的半橋驅(qū)動電路。

 

 

半橋驅(qū)動電路的關鍵是如何實現(xiàn)上橋的驅(qū)動。圖2中C1為自舉電容,D1為快恢復二極管。PWM在上橋調(diào)制。當Q1關斷時,A點電位由于Q2的續(xù)流而回零,此時C1通過VCC及D1進行充電。當輸入信號Hin開通時,上橋的驅(qū)動由C1供電。由于C1的電壓不變,VB隨VS的升高而浮動,所以C1稱為自舉電容。每個PWM周期,電路都給C1充電,維持其電壓基本保持不變。D1的作用是當Q1關斷時為C1充電提供正向電流通道,當Q1開通時,阻止電流反向流入控制電壓VCC。D2的作用是為使上橋能夠快速關斷,減少開關損耗,縮短MOSFET關斷時的不穩(wěn)定過程。D3的作用是避免上橋快速開通時下橋的柵極電壓耦合上升(Cdv/dt)而導致上下橋穿通的現(xiàn)象。

4. 自舉電容的計算及注意事項

影響自舉電容取值的因素

影響自舉電容取值的因素包括:上橋MOSFET的柵極電荷QG、上橋驅(qū)動電路的靜態(tài)電流IQBS、驅(qū)動IC中電平轉(zhuǎn)換電路的電荷要求QLS、自舉電容的漏電流ICBS(leak)。

計算自舉電容值

自舉電容必須在每個開關周期內(nèi)能夠提供以上這些電荷,才能保持其電壓基本不變,否則VBS將會有很大的電壓紋波,并且可能會低于欠壓值VBSUV,使上橋無輸出并停止工作。

電容的最小容量可根據(jù)以下公式算出:

 

 

其中,VF為自舉二極管正向壓降,VLS為下橋器件壓降或上橋負載壓降,f為工作頻率。

5 應用實例

圖3所示為直流無刷電機驅(qū)動器半橋驅(qū)動芯片上橋的自舉電壓(CH1: VBS)和驅(qū)動電壓(CH2: VGS)波形,使用的MOSFET為AOT472。

 

 

 

 

驅(qū)動器采用調(diào)節(jié)PWM占空比的方式實現(xiàn)電機無級調(diào)速。

通過公式1算出電容值應為1μF左右,但在實際應用中存在這樣的問題,即當占空比接近100%(見圖3a)時,由于占空比很大,在每次上橋關斷后Vs電壓不能完全回零,導致自舉電容在每個PWM周期中不能完全被充電。但此時用于每個PWM周期開關MOSFET的電荷并未減少,所以自舉電壓會出現(xiàn)明顯的下降(圖3a中左側(cè)圈內(nèi)部分),這將會導致驅(qū)動IC進入欠壓保護狀態(tài)或MOSFET提前失效。而當占空比為100%時,由于沒有開關電荷損耗,每個換相周期內(nèi)自舉電容的電壓并未下降很多(圖3a中右側(cè)圈內(nèi)部分)。如果選用4.7μF的電容,則測得波形如圖3(b)所示,電壓無明顯下降,因此在驅(qū)動電路設計中應根據(jù)實際需求來選取自舉電容的容量。

6. 相線振鈴的產(chǎn)生及抑制

在圖1中,線路的引線電感(LPCB+LS+LD)及引線電阻RPCB與MOSFET的輸出電容COSS形成了RLC串聯(lián)回路,如圖4(a)所示,對此回路進行分析如下:

 

 

 

[!--empirenews.page--]

 

 

 

 

 

4. 選擇具有較小Qrr和具有較軟恢復特性的MOSFET作為續(xù)流管;

5. 由于增加串聯(lián)回路的電阻會耗散很大的功率,所以增加串聯(lián)電阻的方法在大部分應用中不可行。

振鈴的危害

 

 

圖5 振鈴干擾半橋芯片正常工作的波形

圖5所示為一半橋驅(qū)動MOSFET工作時的波形,當上橋邏輯輸入為高時,上橋MOSFET開通,此時可以看到相線(CH2)上產(chǎn)生了振鈴,這樣的振鈴通過線路的雜散電容耦合到上橋自舉電壓,造成上橋的VBS電壓(CH4)過低而使驅(qū)動芯片進入欠壓保護(圖5中VBS的電壓已跌至5V)。由圖5可以看出,當Hin(CH1)有脈沖輸入時,由于振鈴的影響, MOSFET有些時候不能正常打開,原因是驅(qū)動IC進入了欠壓保護。欠壓保護并不是每個周期都會出現(xiàn),因此在測試時應設置適當?shù)挠|發(fā)方式來捕獲這樣的不正常工作狀態(tài)。當然如果振鈴振幅很大,則驅(qū)動器將不能正常工作,導致電機不能啟動。因此自舉電容最好為能濾除高頻的陶瓷電容,即使是使用電解電容也要并聯(lián)陶瓷電容來去耦。

7. 最小化相線負壓

在設計MOSFET半橋驅(qū)動電路時還應該注意相線上的負壓對驅(qū)動芯片的危害。當上橋關斷后,線圈電流會經(jīng)過相應的下橋續(xù)流,一般認為下橋體二極管會將相線電壓鉗位于-0.7V左右,但事實并非完全如此。上橋關斷前,下橋的體二極管處于反向偏置狀態(tài),當上橋突然關斷,下橋進入續(xù)流狀態(tài)時,由于下橋體二極管由反向偏置過渡到正向偏置需要電荷漂移的過程,因此體二極管并不能立即將電壓鉗位在-0.7V,而是有幾百納秒的時間電壓遠超過0.7V,因此會出現(xiàn)如圖6所示的相線負壓。線路主回路中的寄生電感及快速變化的電流(Ldi/dt)也會使相線負壓增加。

 

 

要使相線負壓變小,可通過減緩上橋關斷的速度從而減小回路中的di/dt或減小主回路寄生電感的方式來實現(xiàn)。

8. 小結(jié)

在設計半橋驅(qū)動電路時,應注意以下方面:

1. 選取適當?shù)淖耘e電容,確保在應用中有足夠的自舉電壓;

2. 選擇合適的驅(qū)動電阻,電阻過大會增加MOSFET的開關損耗,電阻過小會引起相線振鈴和相線負壓,對系統(tǒng)和驅(qū)動IC造成不良影響;

3. 在芯片電源處使用去耦電容;

4. 注意線路的布線,盡量減小驅(qū)動回路和主回路中的寄生電感,使di/dt對系統(tǒng)的影響降到最小;

5. 選擇適合應用的驅(qū)動IC,不同IC的耐壓及驅(qū)動電流等諸多參數(shù)都不一樣,所以應根據(jù)實際應用選擇合適的驅(qū)動IC。

本站聲明: 本文章由作者或相關機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: 驅(qū)動電源

在工業(yè)自動化蓬勃發(fā)展的當下,工業(yè)電機作為核心動力設備,其驅(qū)動電源的性能直接關系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅(qū)動電源設計中至關重要的兩個環(huán)節(jié),集成化方案的設計成為提升電機驅(qū)動性能的關鍵。

關鍵字: 工業(yè)電機 驅(qū)動電源

LED 驅(qū)動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設備的使用壽命。然而,在實際應用中,LED 驅(qū)動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設計、生...

關鍵字: 驅(qū)動電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動電源的公式,電感內(nèi)電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關鍵字: LED 設計 驅(qū)動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動汽車的核心技術(shù)之一是電機驅(qū)動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅(qū)動系統(tǒng)中的關鍵元件,其性能直接影響到電動汽車的動力性能和...

關鍵字: 電動汽車 新能源 驅(qū)動電源

在現(xiàn)代城市建設中,街道及停車場照明作為基礎設施的重要組成部分,其質(zhì)量和效率直接關系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關鍵字: 發(fā)光二極管 驅(qū)動電源 LED

LED通用照明設計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關鍵字: LED 驅(qū)動電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動電源

開關電源具有效率高的特性,而且開關電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現(xiàn)在的LED驅(qū)動電源

關鍵字: LED 驅(qū)動電源 開關電源

LED驅(qū)動電源是把電源供應轉(zhuǎn)換為特定的電壓電流以驅(qū)動LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: LED 隧道燈 驅(qū)動電源
關閉