多處理器系統(tǒng)中Nios II軟核處理器啟動(dòng)方案的設(shè)計(jì)
多處理器系統(tǒng)中Nios II軟核處理器啟動(dòng)方案的設(shè)計(jì)
下面是對(duì)采用當(dāng)前開發(fā)工具和硬件直接實(shí)現(xiàn)多內(nèi)核系統(tǒng)的三個(gè)簡(jiǎn)單模型的概述。這些多內(nèi)核設(shè)計(jì)模式不是一個(gè)為了嚴(yán)格定義一個(gè)系統(tǒng)的剛性模型,而是針對(duì)思考和探討關(guān)于系統(tǒng)實(shí)現(xiàn)宏偉藍(lán)圖的初始點(diǎn),以及規(guī)定了一套通用術(shù)語(yǔ)以
多處理器內(nèi)核的三種設(shè)計(jì)方案
隨著多媒體應(yīng)用要求越來越高,在小小的行動(dòng)裝置內(nèi),除了要有即時(shí)動(dòng)態(tài)影音呈現(xiàn),又必須處理大量圖型化操作介面效果,若是重度游戲需求,3D與觸控和聲光效果又是少不了的系統(tǒng)處理負(fù)荷,嵌入式處理器單純提
隨著多媒體應(yīng)用要求越來越高,在小小的行動(dòng)裝置內(nèi),除了要有即時(shí)動(dòng)態(tài)影音呈現(xiàn),又必須處理大量圖型化操作介面效果,若是重度游戲需求,3D與觸控和聲光效果又是少不了的系統(tǒng)處理負(fù)荷,嵌入式處理器單純提升時(shí)脈
自動(dòng)目標(biāo)識(shí)別(ATR)算法通常包括自動(dòng)地對(duì)目標(biāo)進(jìn)行檢測(cè)、跟蹤、識(shí)別和選擇攻擊點(diǎn)等算法。戰(zhàn)場(chǎng)環(huán)境的復(fù)雜性和目標(biāo)類型的不斷增長(zhǎng)使ATR算法的運(yùn)算量越來越大,因此ATR算法對(duì)微處理器的處理能力提出了更高的要求。由于
在DSP處理器上并行實(shí)現(xiàn)ATR算法
1 引言 在信息技術(shù)高速發(fā)展的今天,對(duì)于計(jì)算機(jī)的使用可以說無(wú)處不在。特別是在軍工領(lǐng)域,計(jì)算機(jī)充當(dāng)了軍事控制和數(shù)據(jù)處理的核心,人們對(duì)計(jì)算機(jī)的性能要求也越來越高。一些特殊領(lǐng)域,如雷達(dá)、導(dǎo)航等對(duì)計(jì)算機(jī)的處
1 引言 在信息技術(shù)高速發(fā)展的今天,對(duì)于計(jì)算機(jī)的使用可以說無(wú)處不在。特別是在軍工領(lǐng)域,計(jì)算機(jī)充當(dāng)了軍事控制和數(shù)據(jù)處理的核心,人們對(duì)計(jì)算機(jī)的性能要求也越來越高。一些特殊領(lǐng)域,如雷達(dá)、導(dǎo)航等對(duì)計(jì)算機(jī)的處
一種多處理器并行計(jì)算機(jī)系統(tǒng)的設(shè)計(jì)
0 引言 渦街流量計(jì)因其介質(zhì)適應(yīng)性強(qiáng)、無(wú)可動(dòng)部件、結(jié)構(gòu)簡(jiǎn)單等優(yōu)點(diǎn),在許多行業(yè)得到了廣泛應(yīng)用。傳統(tǒng)渦街流量計(jì)采用模擬信號(hào)處理方法,抗干擾能力差,且一般采用4~20mA的模擬量輸出,因此不能滿足當(dāng)今現(xiàn)場(chǎng)總線技
0 引言 渦街流量計(jì)因其介質(zhì)適應(yīng)性強(qiáng)、無(wú)可動(dòng)部件、結(jié)構(gòu)簡(jiǎn)單等優(yōu)點(diǎn),在許多行業(yè)得到了廣泛應(yīng)用。傳統(tǒng)渦街流量計(jì)采用模擬信號(hào)處理方法,抗干擾能力差,且一般采用4~20mA的模擬量輸出,因此不能滿足當(dāng)今現(xiàn)場(chǎng)總線技
合成孔徑雷達(dá)信號(hào)處理機(jī)系統(tǒng)的任務(wù)就是對(duì)雷達(dá)回波信號(hào)進(jìn)行距離向和方位向的二維數(shù)據(jù)脈沖壓縮,從而得到地面目標(biāo)的高分辨率圖像。該系統(tǒng)是一個(gè)實(shí)時(shí)信號(hào)處理系統(tǒng),系統(tǒng)數(shù)據(jù)量大,運(yùn)算復(fù)雜。該系統(tǒng)A/D轉(zhuǎn)換模塊的采樣率為
基于共享存儲(chǔ)體的多處理器間數(shù)據(jù)交換的幾種方法
對(duì)于多處理器系統(tǒng),比較流行的有3種模式,對(duì)稱多處理(Symmetric Multiprocessing,SMP)模式、非均勻存儲(chǔ)訪問(Non Uniform Memory Access,NUMA)模式、大規(guī)模并行處理(Massively Parallel Processing,MPP)模式。SMP模
自動(dòng)目標(biāo)識(shí)別(ATR)算法通常包括自動(dòng)地對(duì)目標(biāo)進(jìn)行檢測(cè)、跟蹤、識(shí)別和選擇攻擊點(diǎn)等算法。戰(zhàn)場(chǎng)環(huán)境的復(fù)雜性和目標(biāo)類型的不斷增長(zhǎng)使ATR算法的運(yùn)算量越來越大,因此ATR算法對(duì)微處理器的處理能力提出了更高的要求。由于通用數(shù)字信號(hào)處理芯片能夠通過編程實(shí)現(xiàn)各種復(fù)雜的運(yùn)算,處理精度高,具有較大的靈活性,而且尺寸小、功耗低、速度快,所以一般選擇DSP芯片作為微處理器來實(shí)現(xiàn)ATR算法的工程化和實(shí)用化。
自動(dòng)目標(biāo)識(shí)別(ATR)算法通常包括自動(dòng)地對(duì)目標(biāo)進(jìn)行檢測(cè)、跟蹤、識(shí)別和選擇攻擊點(diǎn)等算法。戰(zhàn)場(chǎng)環(huán)境的復(fù)雜性和目標(biāo)類型的不斷增長(zhǎng)使ATR算法的運(yùn)算量越來越大,因此ATR算法對(duì)微處理器的處理能力提出了更高的要求。由于通用數(shù)字信號(hào)處理芯片能夠通過編程實(shí)現(xiàn)各種復(fù)雜的運(yùn)算,處理精度高,具有較大的靈活性,而且尺寸小、功耗低、速度快,所以一般選擇DSP芯片作為微處理器來實(shí)現(xiàn)ATR算法的工程化和實(shí)用化。
本文以DM270平臺(tái)為基礎(chǔ),設(shè)計(jì)了DSP端的數(shù)據(jù)流核心和ARM端的DSP管理者。與傳統(tǒng)的、基于時(shí)間片的多進(jìn)程系統(tǒng)核心相比,數(shù)據(jù)流核心的進(jìn)程是靠數(shù)據(jù)驅(qū)動(dòng)的方式工作的。它能有效地減少進(jìn)程的切換.節(jié)約系統(tǒng)資源,使DSP可以更加專注于多媒體數(shù)據(jù)的處理。