在ADI看來(lái),必須確保測(cè)量精度不受PCB或測(cè)試裝置的雜散電容和電感影響。您可以通過(guò)使用低電容探頭、在PCB上使用短連接線,并且避免在信號(hào)走線下大面積鋪地來(lái)盡可能規(guī)避這些問(wèn)題。
在運(yùn)算放大器和比較器的研發(fā)生產(chǎn)過(guò)程中,羅姆秉持著垂直整合的技術(shù)開(kāi)發(fā)理念,將電路設(shè)計(jì)、布局和工藝有效連接融合,不斷提升產(chǎn)品抗干擾性能。
從本質(zhì)上講,大多數(shù)直流電流檢測(cè)電路都是從電源線中的電阻開(kāi)始的(盡管磁場(chǎng)檢測(cè)是一個(gè)很好的替代方案,尤其是在更高電流的情況下)。一個(gè)簡(jiǎn)單的測(cè)量電阻兩端的電壓降并根據(jù)需要對(duì)其進(jìn)行縮放以讀取電流(E = I × R(如果我不包括這個(gè),有人會(huì)抱怨))。如果檢測(cè)電阻器位于接地端,則解決方案是一個(gè)簡(jiǎn)單的運(yùn)算放大器電路。一切都以接地為參考,您只需注意接地布局中的小電壓降。
運(yùn)算放大器(通常稱為運(yùn)算放大器)是用于設(shè)計(jì)電子電路的無(wú)處不在的構(gòu)建塊。今天,這些設(shè)備被制造成小型集成電路,但這個(gè)概念很久以前就開(kāi)始使用真空管了。有一項(xiàng) 1946 年早期使用運(yùn)算放大器概念的專利,盡管當(dāng)時(shí)并未使用該名稱。Raggazinni 經(jīng)常被認(rèn)為是在 1947 年創(chuàng)造了“運(yùn)算放大器”一詞。
從內(nèi)部圖可以看出運(yùn)算放大器和比較器的差別在于輸出電路。運(yùn)算放大器采用雙晶體管推挽輸出,而比較器只用一只晶體管,集電極連到輸出端,發(fā)射極接地。
本文展示了我自己使用并推薦給其他人的運(yùn)算放大器環(huán)路穩(wěn)定性分析方法的優(yōu)勢(shì)。除了環(huán)路增益 (Aol β) 相位裕度之外,該方法還著眼于開(kāi)環(huán)增益 (Aol) 和反向反饋因子 (1/β) 曲線的行為和閉合速率。這種方法適用于一般控制系統(tǒng),但被 Jerald Graeme 提倡用于運(yùn)算放大器電路分析。
功放芯片就好像是多媒體播放設(shè)備的“心臟”,是為播放設(shè)備提供動(dòng)力的部件,也是關(guān)系到音質(zhì)的重要環(huán)節(jié)之一,其重要性自然不言而喻。于是有許多音頻功放芯片的初學(xué)者就會(huì)好奇,要怎么才能選到合適的芯片呢?常用的音頻功放芯片有哪些?下面是工采網(wǎng)搜集了幾款最常用的音頻功放芯片,以及功率放大集成電路介紹希望對(duì)大家的音頻電路設(shè)計(jì)有幫助。
在我的上一篇信號(hào)鏈基礎(chǔ)文章《運(yùn)算放大器環(huán)路穩(wěn)定性分析的基礎(chǔ)知識(shí):雙環(huán)路增益的故事》之后,我收到了有關(guān)如何生成我查看過(guò)的開(kāi)環(huán) SPICE 仿真曲線的問(wèn)題。雖然有很多方法可以做到這一點(diǎn),但我一直使用的方法是打開(kāi)或“中斷”循環(huán),同時(shí)將一個(gè)小信號(hào)注入到高 Z 節(jié)點(diǎn),并查看循環(huán)中不同點(diǎn)的響應(yīng)。但是您可能對(duì)在哪里中斷循環(huán)、用于中斷循環(huán)的方法以及該方法與其他更正式的循環(huán)穩(wěn)定性方法的比較有其他問(wèn)題。
評(píng)估模擬開(kāi)關(guān)、多路復(fù)用器、運(yùn)算放大器和其他 IC 對(duì) IC 測(cè)試工程師提出了挑戰(zhàn)。典型的測(cè)試場(chǎng)景需要對(duì)設(shè)備的輸入施加測(cè)試或強(qiáng)制電壓,并測(cè)量任何產(chǎn)生的泄漏電流和偏移電流,通常為 1 pA 或更低。與緩慢且昂貴的商用自動(dòng)測(cè)試儀相比,這個(gè)設(shè)計(jì)中的低功耗測(cè)量電路可以強(qiáng)制提供廣泛的測(cè)試電壓并提供快速穩(wěn)定,以最大限度地提高設(shè)備測(cè)試吞吐量。廣泛使用表面貼裝元件可最大限度地減少其印刷電路板空間要求,并允許在靠近測(cè)試夾具的地方封裝多個(gè)測(cè)量電路。
為了增進(jìn)大家對(duì)放大器的認(rèn)識(shí),本文將對(duì)集成運(yùn)算放大器的分類予以介紹。
為增進(jìn)大家對(duì)放大器的認(rèn)識(shí),本文將對(duì)放大器的原理予以介紹,并探討如何去設(shè)計(jì)運(yùn)算放大器。
在許多應(yīng)用中,例如溫度傳感,需要兩個(gè)電源電壓來(lái)為系統(tǒng)中的運(yùn)算放大器供電——一個(gè)正電壓和一個(gè)負(fù)電壓。放大器需要這種雙電源,以便正確測(cè)量非常接近或什至低于地面的信號(hào)。如果運(yùn)算放大器的負(fù)電源輸入僅接地并使用單個(gè)正電源電壓,則這些信號(hào)將無(wú)法正確處理。 對(duì)于看到這些用例的放大器來(lái)說(shuō),負(fù)電壓和正電壓都至關(guān)重要。
2022 年 8 月 2 日,中國(guó) – 意法半導(dǎo)體的TSB582雙路高輸出放大器可以簡(jiǎn)化工業(yè)電機(jī)、閥門、旋轉(zhuǎn)變壓器和汽車電動(dòng)轉(zhuǎn)向系統(tǒng)、自動(dòng)泊車等感性和低阻性負(fù)載驅(qū)動(dòng)電路。
運(yùn)放作為模擬電路的主要器件之一,其供電方式分為單電源供電和雙電源供電兩種,這是由運(yùn)放的芯片結(jié)構(gòu)所決定的。
低壓和便攜式應(yīng)用需要軌到軌 I/O 運(yùn)算放大器來(lái)獲得動(dòng)態(tài)范圍和最大輸出信號(hào)擺幅。這些運(yùn)算放大器接受兩個(gè)電源軌 200 mV 范圍內(nèi)的輸入電壓,其輸出電壓擺幅在電源軌 50 mV 范圍內(nèi)。軌到軌 I/O 運(yùn)算放大器會(huì)引入獨(dú)特的錯(cuò)誤,了解這些錯(cuò)誤有助于最大限度地減少它們并優(yōu)化性能。
跨阻抗放大器(TIA) 最常使用運(yùn)算放大器(op amps) 構(gòu)建。而且,越來(lái)越多的(如果不是全部的話)模數(shù)轉(zhuǎn)換器(ADC) 是全差分系統(tǒng),需要具有單端差分機(jī)制。對(duì)于需要直流耦合的應(yīng)用,這主要是通過(guò)使用全差分放大器(FDA) 來(lái)實(shí)現(xiàn)的。
我們?cè)陧?xiàng)目中如何預(yù)計(jì)運(yùn)算放大器 (op amp) 的有源模擬濾波器中的振鈴?模擬濾波器的目的是去除有意頻帶中的信號(hào),而不是無(wú)意中將額外的振鈴添加到信號(hào)路徑中??紤]查看每個(gè)濾波器級(jí)的 Q 值或品質(zhì)因數(shù)。圖 1 顯示了二階低通巴特沃斯濾波器的特性示例。
社區(qū)成員有機(jī)會(huì)贏取運(yùn)算放大器套件用于構(gòu)建參賽項(xiàng)目
2022 年 3 月 25 日,中國(guó)– 意法半導(dǎo)體TSV772 雙路運(yùn)算放大器 (運(yùn)放) 兼?zhèn)涓呔群偷凸?,更有尺寸很小?.0mm x 2.0mm DFN8封裝可選。
近年來(lái),電池供電電子產(chǎn)品的普及使功耗成為模擬電路設(shè)計(jì)人員日益關(guān)注的重點(diǎn)??紤]到這一點(diǎn),本文是系列文章中的第一篇,該系列文章將介紹使用低功耗運(yùn)算放大器 (op amps)設(shè)計(jì)系統(tǒng)的細(xì)節(jié)。 在第一部分中,我將討論運(yùn)算放大器電路的節(jié)能技術(shù),包括選擇具有低靜態(tài)電流 (I Q ) 的放大器和增加反饋網(wǎng)絡(luò)的負(fù)載電阻。