www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當(dāng)前位置:首頁(yè) > 芯聞號(hào) > 充電吧
[導(dǎo)讀]LeNet5的第一層卷積運(yùn)算,輸入圖像大小為inH * inW,卷積核c1CNum個(gè),輸出feature map大小為c1H * c1W, 偏置個(gè)數(shù)、feature map個(gè)數(shù)與卷積核個(gè)數(shù)相等。輸入圖

LeNet5的第一層卷積運(yùn)算,輸入圖像大小為inH * inW,卷積核c1CNum個(gè),輸出feature map大小為c1H * c1W, 偏置個(gè)數(shù)、feature map個(gè)數(shù)與卷積核個(gè)數(shù)相等。輸入圖像inmap:inH * inW,卷積核:c1conv: c1CNum * 5 * 5, 輸出圖像:c1map: c1CNum * c1H * c1W, 偏置c1bias:c1CNum


functioin?ForwardC1:
????for?ith?convolution?kernel:
????????for?hth?row?in?feature?map?i:
????????????for?coth?col?in?feature?map?i?row?h:
????????????????令curc1為c1map?+?i?*?c1H?*?c1W?+?h?*?c1W?+?co
?????????????????令指針curc1指向位置的值為0
?????????????????for?cr?in?ranges?5:
?????????????????????for?cc?in?ranges?5:
?????????????????????????令curc1指向位置的值自加?(inmap[(h+cr)*inW?+?co?+cc]乘以c1conv[i*5*5?+?cr?*?5?+?cc])
?????????????????????endfor?cc
?????????????????endfor?cr
????????????????令curc1指向位置的值自加?(c1bias[i])
????????????????將curc1指向的值輸入到激活函數(shù),輸出賦給它自己
????????????endfor?co
????????endfor?h
????endfor?i
endfunction?ForwardC1



S2層池化,輸入圖像c1map: c1CNum * c1H * c1W, 輸出圖像:s2map: s2Num * s2H * s2W,其中s2Num = c1CNum,池化權(quán)值: s2pooling: s2Num,偏置:s2bias: s2Num


function?ForwardS2:
????for?ith?s2?feature?map:
????????for?hth?row?in?feature?map?i:
????????????for?coth?col?in?feature?map?i?row?h:
????????????????令curs2為s2map?+?i?*?s2H?*?s2W?+?h?*?s2W?+?co
????????????????令curs2指向的值?為以下四個(gè)值的均值乘以s2pooling[i]?加上s2bias[i]:
????????????????????c1map[i,?h?*?2?*?c1W,?co?*?2],?c1map[i,?h?*?2?*?c1W,?co?*?2+1],?c1map[i,?(h?*?2?+1)?*?c1W,?co?*?2],?c1map[i,?(h?*?2+1)?*?c1W,?co?*?2?+?1]
????????????????將curs2指向的值輸入到激活函數(shù),輸出賦給它自己
????????????endfo?co
????????endfor?h
????endfor?i
endfunction?ForwardS2



C3層卷積:輸入圖像:s2map:?s2Num * s2H * s2W,輸出圖像:c3map: c3CNum * c3H * c3W,卷積核:c3conv: c3CNum * 5*5,偏置:c3bias: c3CNum:


function?ForwardC3:
????初始化一個(gè)數(shù)組s2MapSum:?s2H?*?s2W,各元素為0
????for?hth?in?ranges?s2H:
????????for?coth?in?ranges?s2W:
????????????for?ith?in?ranges?s2Num:
???????????????令s2MapSum[h,?co]?自加?s2map[i,?h,?co]
????????????endfor?i
???????endfor?co
????endfor?h
????for?ith?in?ranges?c3CNum:
????????for?hth?in?ranges?c3H:
????????????for?coth?in?ranges?c3W:
????????????????令curc3為c3map?+?i?*?c3H?*?c3W?+?h?*?c3W?+?co
????????????????令curc3指向值為0
????????????????for?ch?in?ranges?5:
????????????????????for?cc?in?ranges?5:
????????????????????????curc3指向的值自加?(s2MapSum[h+ch,?co?+?cc]?乘以?c3conv[ch,?cc])
????????????????????endfor?cc
????????????????endfor?ch
????????????????令curc3指向的值自加c3bias[i]然后輸入激活函數(shù),返回值賦給curc3指向的值
????????????endfor?co
????????endfor?h
????endfor?i
endfunction?ForwardC3




S4池化層:輸入圖像:c3map: c3CNum * c3H * c3W,輸出圖像:s4map: s4Num * s4H * s4W,其中s4Num等于c3CNum,池化權(quán)值s4pooling: s4Num,偏置:s4bias: s4Num:


function?ForwardS4:
????for?ith?in?ranges?s4Num:
????????for?hth?in?ranges?s4H:
????????????for?coth?in?ranges?s4W:
????????????????令s4map[i,h,co]的值為以下四個(gè)值的均值乘以權(quán)值s4pooling[i]加上偏置s4bias[i]:
????????????????c3map[i,?h*2,?co*2],?c3map[i,?h*2,?co*2?+?1],?c3map[i,?h*2+1,?co*2],?c3map[i,?h*2+1,?co*2+1]
????????????????將s4map[i,h,co]的值輸入到激活函數(shù),將返回值賦給它自己
????????????endfor?co
????????endfor?h
????endfor?i
endfunction?ForwardS4




C5卷積層:輸入圖像:s4map: s4Num * s4H * s4W, s4H = 5, s4W = 5,輸出圖像:c5map: c5CNum * c5H * c5W, ?c5H = 1, c5W = 1, ?卷積核:c5conv: c5CNum * 5 *5,偏置:c5bias: c5CNum:


function?ForwardC5:
????初始化一個(gè)數(shù)組s4MapSum:?s4H?*?s4W
????for?h?in?ranges?s4H:
????????for?co?in?ranges?s4W:
????????????for?i?in?ranges?s4Num:
????????????????s4MapSum[h,co]?自加?s4Num[i,?h,co]
????????????endfor?i
????????endfor?co
????endfor?h
????for?i?in?ranges?c5CNum:
????????for?h?in?ranges?c5H:
????????????for?co?in?ranges?c5W:
????????????????令curc5為c5map?+?i?*?c5H?*?c5W?+?h?*?c5W?+?co
????????????????令curc5指向的值為0
????????????????for?ch?in?ranges?5:
????????????????????for?cc?in?ranges?5:
????????????????????????curc5指向的值自加(s4MapSum[h?+?ch,?co?+?cc]?乘以?c5conv[i,?ch,?cc])
????????????????????endfor?cc
????????????????endfor?ch
????????????????curc5指向的值自加c5bias[i]然后輸入到激活函數(shù),返回值賦值給curc5指向的值
????????????endfor?co
????????endfor?h
????endfor?i
endfunction?ForwardC5




全連接輸出層:輸入圖像:c5map: c5CNum * c5H * c5W,輸出圖像:outmap: outNum, 全連接權(quán)值:outfullconn: c5CNum * outNum,偏置: outbias: outNum:


function?ForwardOut:
????for?i?in?ranges?outNum:
????????令curout為outmap?+?i
????????令curout指向的值為0
????????for?ch?in?ranges?c5CNum:
?????????????curout指向的值自加(c5map[ch]?乘以outfullconn[ch,?i])
????????endfor?ch
????????令curout指向的值自加outbias[i]然后輸入到激活函數(shù),將返回值賦值給curout指向的值
????endfor?i
endfunction?ForwardOut



反向計(jì)算

輸出反饋:


function?BackwardOut:
????for?i?in?ranges?outNum:
		輸出的第i個(gè)值的誤差outdelt[i]等于第i個(gè)輸出outmap[i]減去期望的第i個(gè)值label[i],然后乘以輸出的激活函數(shù)的導(dǎo)數(shù)
		偏置的誤差outbiasdelta[i]等于輸出誤差outdelt[i]
	endfor?i
	
	for?h?in?ranges?c5CNum:
????????for?co?in?ranges?outNum:
????????????fulldelta[h,?co]?等于C5層第h個(gè)神經(jīng)元的值乘以outdelt[co]
		endfor?co
	endfor?h
endfunction?BackwardOut




C5層反饋:


function?BackwardC5:
????for?h?in?ranges?c5CNum:
		令臨時(shí)變量curerr為0
	????for?co?in?ranges?outNum:
		????每個(gè)輸出神經(jīng)元誤差outdelt[co]乘以輸出全連接權(quán)值fullconn[h,co],curerr自加此乘積
		endfor?co
		神經(jīng)元誤差c5delta[h]為c5map[h]神經(jīng)元激活函數(shù)導(dǎo)數(shù)乘以curerr
		偏置誤差c5biasdelta[h]等于神經(jīng)元誤差c5delta[h]
		
		for?ch?in?ranges?s4H:
			for?co?in?ranges?s4W:
				第h個(gè)卷積核的第ch,co個(gè)算子誤差為s4MapSum[ch,?co]乘以C5層第h個(gè)神經(jīng)元誤差
			endfor?co
		endfor?ch
	endfor?h
	
endfunction?BackwardC5



S4層反饋:


function?BackwardS4:
????初始化數(shù)組c5convSum?:5*5
????for?i?in?ranges?c5CNum:
		for?h?in?ranges?c5H:
			for?co?in?ranges?c5W:
				c5convSum[h,co]自加第i個(gè)卷積核對(duì)應(yīng)位置c5conv[i,?h,?co]乘以C5第h個(gè)神經(jīng)元誤差
			endfor?co
		endfor?h
	endfor?i
	for?i?in?ranges?s4Num:
	????for?h?in?ranges?s4H:
			for?co?in?ranges?s4W:
				S4層神經(jīng)元誤差s4delta[i,h,co]等于其激活函數(shù)的導(dǎo)數(shù)乘以c5convSum[h,co]
			endfor?co
		endfor?h
		偏置誤差為對(duì)應(yīng)map的神經(jīng)元誤差均值
		池化權(quán)值誤差等于(S4層神經(jīng)元誤差乘以C3層對(duì)應(yīng)位置神經(jīng)元均值)再求均值
	endfor?i
endfunction?BackwardS4



C3層反饋:


function?BackwardC3:
	初始化數(shù)組s2MapSum:s2H?*?s2W
	for?i?in?s2Num:
		for?h?in?s2H:
			for?co?in?s2W:
				s2MapSum[h,co]自加s2map[i,h,co]
			endfor?co
		endfor?h
	endfor?i
	for?i?in?ranges?C3CNum:
		for?h?in?ranges?c3H:
			for?co?in?ranges?c3W:
				C3神經(jīng)元誤差c3delta[i,h,co]等于其激活函數(shù)導(dǎo)數(shù)乘以對(duì)應(yīng)池化權(quán)值再乘以對(duì)應(yīng)位置的S4神經(jīng)元誤差
			endfor?co
		endfor?h
		偏置誤差為對(duì)應(yīng)map的神經(jīng)元誤差均值
		
		for?ch?in?ranges?5:
			for?cc?in?ranges?5:
				令c3convdelta[i,?ch,?cc]為0
				for?sh?in?c3H:
					for?sc?in?c3W:
						c3convdelta[i,?ch,?cc]自加s2Map[ch?+?sh,?cc?+?sc]乘以c3delta[i,sh,?sc]
					endfor?sc
				endfor?sh
			endfor?cc
		endfor?ch
	endfor?i
endfunction?BackwardC3



S2層反饋:



function?BackwardS2:
????初始化數(shù)組c3convSum:?s2H?*?s2W
	for?i?in?ranges?c3CNum:
		for?h?in?ranges?c3H:
			for?co?in?ranges?c3W:
				for?ch?in?ranges?5:
					for?cc?in?ranges?5:
						c3convSum[h+ch,?co+cc]自加c3conv[i,ch,?cc]乘以C3第i個(gè)map中[h,co]處神經(jīng)元的誤差
					endfor?cc
				endfor?ch
			endfor?co
		endfor?h
	endfor?i
	
	for?i?in?ranges?s2Num:
		for?h?in?ranges?s2H:
			for?co?in?ranges?s2W:
				對(duì)應(yīng)i個(gè)map的[h,co]處神經(jīng)元激活函數(shù)導(dǎo)數(shù)乘以c3convSum[h,co]得到對(duì)應(yīng)位置S2的神經(jīng)元誤差
			endfor?co
		endfor?h
		令偏置誤差為對(duì)應(yīng)map的神經(jīng)元誤差均值
		池化權(quán)值誤差為對(duì)應(yīng)map?i中,
		for?h?in?ranges?s2H:
			for?co?in?ranges?s2W:
				池化權(quán)值誤差s2poolingdelta[i]自加S2神經(jīng)元誤差s2delta[i,h,co]乘以以下四個(gè)元素的均值:
					c1map[h*2,?co*2],?c1map[h*2,?co*2+1],?c1map[h*2+1,?co*2],?c1map[h*2+1,?co*2+1]
			endfor?co
		endfor?h
	endfor?i
endfunction?BackwardS2



C1層反饋:



function?BackwardC1:
	for?i?in?ranges?c1CNum:
		for?h?in?ranges?c1H:
			for?co?in?ranges?c1W:
				C1神經(jīng)元誤差為其激活函數(shù)導(dǎo)數(shù)乘以對(duì)應(yīng)池化權(quán)值乘以對(duì)應(yīng)S2神經(jīng)元誤差
			endfor?co
		endfor?h
		
		偏置為對(duì)應(yīng)map神經(jīng)元誤差的均值
		for?ch?in?ranges?5:
			for?cc?in?ranges?5:
				for?h?in?ranges?c1H:
					for?co?in?ranges?c1W:
					????對(duì)應(yīng)卷積核的誤差c1convdelta[i,?ch,?cc]自加inmap[h+ch,?co+cc]乘以c1delta[i,?h,?co]
					endfor?co
				endfor?h
			endfor?cc
		endfor?ch
				
	endfor?i
endfunction?BackwardC1




這里有幾步是我沒有理解LeNet5架構(gòu)導(dǎo)致的錯(cuò)誤,在研究了博客后,通過調(diào)試代碼,才逐步了解。







本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

倫敦2024年8月29日 /美通社/ -- 英國(guó)汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時(shí)1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動(dòng) BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時(shí)企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險(xiǎn),如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對(duì)日本游戲市場(chǎng)的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)開幕式在貴陽(yáng)舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語(yǔ)權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對(duì)環(huán)境變化,經(jīng)營(yíng)業(yè)績(jī)穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤(rùn)率延續(xù)升勢(shì) 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長(zhǎng) 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競(jìng)爭(zhēng)力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競(jìng)爭(zhēng)優(yōu)勢(shì)...

關(guān)鍵字: 通信 BSP 電信運(yùn)營(yíng)商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺(tái)與中國(guó)電影電視技術(shù)學(xué)會(huì)聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會(huì)上宣布正式成立。 活動(dòng)現(xiàn)場(chǎng) NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長(zhǎng)三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會(huì)上,軟通動(dòng)力信息技術(shù)(集團(tuán))股份有限公司(以下簡(jiǎn)稱"軟通動(dòng)力")與長(zhǎng)三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉