www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當(dāng)前位置:首頁(yè) > > 充電吧
[導(dǎo)讀]LeNet5的第一層卷積運(yùn)算,輸入圖像大小為inH * inW,卷積核c1CNum個(gè),輸出feature map大小為c1H * c1W, 偏置個(gè)數(shù)、feature map個(gè)數(shù)與卷積核個(gè)數(shù)相等。輸入圖

LeNet5的第一層卷積運(yùn)算,輸入圖像大小為inH * inW,卷積核c1CNum個(gè),輸出feature map大小為c1H * c1W, 偏置個(gè)數(shù)、feature map個(gè)數(shù)與卷積核個(gè)數(shù)相等。輸入圖像inmap:inH * inW,卷積核:c1conv: c1CNum * 5 * 5, 輸出圖像:c1map: c1CNum * c1H * c1W, 偏置c1bias:c1CNum


functioin?ForwardC1:
????for?ith?convolution?kernel:
????????for?hth?row?in?feature?map?i:
????????????for?coth?col?in?feature?map?i?row?h:
????????????????令curc1為c1map?+?i?*?c1H?*?c1W?+?h?*?c1W?+?co
?????????????????令指針curc1指向位置的值為0
?????????????????for?cr?in?ranges?5:
?????????????????????for?cc?in?ranges?5:
?????????????????????????令curc1指向位置的值自加?(inmap[(h+cr)*inW?+?co?+cc]乘以c1conv[i*5*5?+?cr?*?5?+?cc])
?????????????????????endfor?cc
?????????????????endfor?cr
????????????????令curc1指向位置的值自加?(c1bias[i])
????????????????將curc1指向的值輸入到激活函數(shù),輸出賦給它自己
????????????endfor?co
????????endfor?h
????endfor?i
endfunction?ForwardC1



S2層池化,輸入圖像c1map: c1CNum * c1H * c1W, 輸出圖像:s2map: s2Num * s2H * s2W,其中s2Num = c1CNum,池化權(quán)值: s2pooling: s2Num,偏置:s2bias: s2Num


function?ForwardS2:
????for?ith?s2?feature?map:
????????for?hth?row?in?feature?map?i:
????????????for?coth?col?in?feature?map?i?row?h:
????????????????令curs2為s2map?+?i?*?s2H?*?s2W?+?h?*?s2W?+?co
????????????????令curs2指向的值?為以下四個(gè)值的均值乘以s2pooling[i]?加上s2bias[i]:
????????????????????c1map[i,?h?*?2?*?c1W,?co?*?2],?c1map[i,?h?*?2?*?c1W,?co?*?2+1],?c1map[i,?(h?*?2?+1)?*?c1W,?co?*?2],?c1map[i,?(h?*?2+1)?*?c1W,?co?*?2?+?1]
????????????????將curs2指向的值輸入到激活函數(shù),輸出賦給它自己
????????????endfo?co
????????endfor?h
????endfor?i
endfunction?ForwardS2



C3層卷積:輸入圖像:s2map:?s2Num * s2H * s2W,輸出圖像:c3map: c3CNum * c3H * c3W,卷積核:c3conv: c3CNum * 5*5,偏置:c3bias: c3CNum:


function?ForwardC3:
????初始化一個(gè)數(shù)組s2MapSum:?s2H?*?s2W,各元素為0
????for?hth?in?ranges?s2H:
????????for?coth?in?ranges?s2W:
????????????for?ith?in?ranges?s2Num:
???????????????令s2MapSum[h,?co]?自加?s2map[i,?h,?co]
????????????endfor?i
???????endfor?co
????endfor?h
????for?ith?in?ranges?c3CNum:
????????for?hth?in?ranges?c3H:
????????????for?coth?in?ranges?c3W:
????????????????令curc3為c3map?+?i?*?c3H?*?c3W?+?h?*?c3W?+?co
????????????????令curc3指向值為0
????????????????for?ch?in?ranges?5:
????????????????????for?cc?in?ranges?5:
????????????????????????curc3指向的值自加?(s2MapSum[h+ch,?co?+?cc]?乘以?c3conv[ch,?cc])
????????????????????endfor?cc
????????????????endfor?ch
????????????????令curc3指向的值自加c3bias[i]然后輸入激活函數(shù),返回值賦給curc3指向的值
????????????endfor?co
????????endfor?h
????endfor?i
endfunction?ForwardC3




S4池化層:輸入圖像:c3map: c3CNum * c3H * c3W,輸出圖像:s4map: s4Num * s4H * s4W,其中s4Num等于c3CNum,池化權(quán)值s4pooling: s4Num,偏置:s4bias: s4Num:


function?ForwardS4:
????for?ith?in?ranges?s4Num:
????????for?hth?in?ranges?s4H:
????????????for?coth?in?ranges?s4W:
????????????????令s4map[i,h,co]的值為以下四個(gè)值的均值乘以權(quán)值s4pooling[i]加上偏置s4bias[i]:
????????????????c3map[i,?h*2,?co*2],?c3map[i,?h*2,?co*2?+?1],?c3map[i,?h*2+1,?co*2],?c3map[i,?h*2+1,?co*2+1]
????????????????將s4map[i,h,co]的值輸入到激活函數(shù),將返回值賦給它自己
????????????endfor?co
????????endfor?h
????endfor?i
endfunction?ForwardS4




C5卷積層:輸入圖像:s4map: s4Num * s4H * s4W, s4H = 5, s4W = 5,輸出圖像:c5map: c5CNum * c5H * c5W, ?c5H = 1, c5W = 1, ?卷積核:c5conv: c5CNum * 5 *5,偏置:c5bias: c5CNum:


function?ForwardC5:
????初始化一個(gè)數(shù)組s4MapSum:?s4H?*?s4W
????for?h?in?ranges?s4H:
????????for?co?in?ranges?s4W:
????????????for?i?in?ranges?s4Num:
????????????????s4MapSum[h,co]?自加?s4Num[i,?h,co]
????????????endfor?i
????????endfor?co
????endfor?h
????for?i?in?ranges?c5CNum:
????????for?h?in?ranges?c5H:
????????????for?co?in?ranges?c5W:
????????????????令curc5為c5map?+?i?*?c5H?*?c5W?+?h?*?c5W?+?co
????????????????令curc5指向的值為0
????????????????for?ch?in?ranges?5:
????????????????????for?cc?in?ranges?5:
????????????????????????curc5指向的值自加(s4MapSum[h?+?ch,?co?+?cc]?乘以?c5conv[i,?ch,?cc])
????????????????????endfor?cc
????????????????endfor?ch
????????????????curc5指向的值自加c5bias[i]然后輸入到激活函數(shù),返回值賦值給curc5指向的值
????????????endfor?co
????????endfor?h
????endfor?i
endfunction?ForwardC5




全連接輸出層:輸入圖像:c5map: c5CNum * c5H * c5W,輸出圖像:outmap: outNum, 全連接權(quán)值:outfullconn: c5CNum * outNum,偏置: outbias: outNum:


function?ForwardOut:
????for?i?in?ranges?outNum:
????????令curout為outmap?+?i
????????令curout指向的值為0
????????for?ch?in?ranges?c5CNum:
?????????????curout指向的值自加(c5map[ch]?乘以outfullconn[ch,?i])
????????endfor?ch
????????令curout指向的值自加outbias[i]然后輸入到激活函數(shù),將返回值賦值給curout指向的值
????endfor?i
endfunction?ForwardOut



反向計(jì)算

輸出反饋:


function?BackwardOut:
????for?i?in?ranges?outNum:
		輸出的第i個(gè)值的誤差outdelt[i]等于第i個(gè)輸出outmap[i]減去期望的第i個(gè)值label[i],然后乘以輸出的激活函數(shù)的導(dǎo)數(shù)
		偏置的誤差outbiasdelta[i]等于輸出誤差outdelt[i]
	endfor?i
	
	for?h?in?ranges?c5CNum:
????????for?co?in?ranges?outNum:
????????????fulldelta[h,?co]?等于C5層第h個(gè)神經(jīng)元的值乘以outdelt[co]
		endfor?co
	endfor?h
endfunction?BackwardOut




C5層反饋:


function?BackwardC5:
????for?h?in?ranges?c5CNum:
		令臨時(shí)變量curerr為0
	????for?co?in?ranges?outNum:
		????每個(gè)輸出神經(jīng)元誤差outdelt[co]乘以輸出全連接權(quán)值fullconn[h,co],curerr自加此乘積
		endfor?co
		神經(jīng)元誤差c5delta[h]為c5map[h]神經(jīng)元激活函數(shù)導(dǎo)數(shù)乘以curerr
		偏置誤差c5biasdelta[h]等于神經(jīng)元誤差c5delta[h]
		
		for?ch?in?ranges?s4H:
			for?co?in?ranges?s4W:
				第h個(gè)卷積核的第ch,co個(gè)算子誤差為s4MapSum[ch,?co]乘以C5層第h個(gè)神經(jīng)元誤差
			endfor?co
		endfor?ch
	endfor?h
	
endfunction?BackwardC5



S4層反饋:


function?BackwardS4:
????初始化數(shù)組c5convSum?:5*5
????for?i?in?ranges?c5CNum:
		for?h?in?ranges?c5H:
			for?co?in?ranges?c5W:
				c5convSum[h,co]自加第i個(gè)卷積核對(duì)應(yīng)位置c5conv[i,?h,?co]乘以C5第h個(gè)神經(jīng)元誤差
			endfor?co
		endfor?h
	endfor?i
	for?i?in?ranges?s4Num:
	????for?h?in?ranges?s4H:
			for?co?in?ranges?s4W:
				S4層神經(jīng)元誤差s4delta[i,h,co]等于其激活函數(shù)的導(dǎo)數(shù)乘以c5convSum[h,co]
			endfor?co
		endfor?h
		偏置誤差為對(duì)應(yīng)map的神經(jīng)元誤差均值
		池化權(quán)值誤差等于(S4層神經(jīng)元誤差乘以C3層對(duì)應(yīng)位置神經(jīng)元均值)再求均值
	endfor?i
endfunction?BackwardS4



C3層反饋:


function?BackwardC3:
	初始化數(shù)組s2MapSum:s2H?*?s2W
	for?i?in?s2Num:
		for?h?in?s2H:
			for?co?in?s2W:
				s2MapSum[h,co]自加s2map[i,h,co]
			endfor?co
		endfor?h
	endfor?i
	for?i?in?ranges?C3CNum:
		for?h?in?ranges?c3H:
			for?co?in?ranges?c3W:
				C3神經(jīng)元誤差c3delta[i,h,co]等于其激活函數(shù)導(dǎo)數(shù)乘以對(duì)應(yīng)池化權(quán)值再乘以對(duì)應(yīng)位置的S4神經(jīng)元誤差
			endfor?co
		endfor?h
		偏置誤差為對(duì)應(yīng)map的神經(jīng)元誤差均值
		
		for?ch?in?ranges?5:
			for?cc?in?ranges?5:
				令c3convdelta[i,?ch,?cc]為0
				for?sh?in?c3H:
					for?sc?in?c3W:
						c3convdelta[i,?ch,?cc]自加s2Map[ch?+?sh,?cc?+?sc]乘以c3delta[i,sh,?sc]
					endfor?sc
				endfor?sh
			endfor?cc
		endfor?ch
	endfor?i
endfunction?BackwardC3



S2層反饋:



function?BackwardS2:
????初始化數(shù)組c3convSum:?s2H?*?s2W
	for?i?in?ranges?c3CNum:
		for?h?in?ranges?c3H:
			for?co?in?ranges?c3W:
				for?ch?in?ranges?5:
					for?cc?in?ranges?5:
						c3convSum[h+ch,?co+cc]自加c3conv[i,ch,?cc]乘以C3第i個(gè)map中[h,co]處神經(jīng)元的誤差
					endfor?cc
				endfor?ch
			endfor?co
		endfor?h
	endfor?i
	
	for?i?in?ranges?s2Num:
		for?h?in?ranges?s2H:
			for?co?in?ranges?s2W:
				對(duì)應(yīng)i個(gè)map的[h,co]處神經(jīng)元激活函數(shù)導(dǎo)數(shù)乘以c3convSum[h,co]得到對(duì)應(yīng)位置S2的神經(jīng)元誤差
			endfor?co
		endfor?h
		令偏置誤差為對(duì)應(yīng)map的神經(jīng)元誤差均值
		池化權(quán)值誤差為對(duì)應(yīng)map?i中,
		for?h?in?ranges?s2H:
			for?co?in?ranges?s2W:
				池化權(quán)值誤差s2poolingdelta[i]自加S2神經(jīng)元誤差s2delta[i,h,co]乘以以下四個(gè)元素的均值:
					c1map[h*2,?co*2],?c1map[h*2,?co*2+1],?c1map[h*2+1,?co*2],?c1map[h*2+1,?co*2+1]
			endfor?co
		endfor?h
	endfor?i
endfunction?BackwardS2



C1層反饋:



function?BackwardC1:
	for?i?in?ranges?c1CNum:
		for?h?in?ranges?c1H:
			for?co?in?ranges?c1W:
				C1神經(jīng)元誤差為其激活函數(shù)導(dǎo)數(shù)乘以對(duì)應(yīng)池化權(quán)值乘以對(duì)應(yīng)S2神經(jīng)元誤差
			endfor?co
		endfor?h
		
		偏置為對(duì)應(yīng)map神經(jīng)元誤差的均值
		for?ch?in?ranges?5:
			for?cc?in?ranges?5:
				for?h?in?ranges?c1H:
					for?co?in?ranges?c1W:
					????對(duì)應(yīng)卷積核的誤差c1convdelta[i,?ch,?cc]自加inmap[h+ch,?co+cc]乘以c1delta[i,?h,?co]
					endfor?co
				endfor?h
			endfor?cc
		endfor?ch
				
	endfor?i
endfunction?BackwardC1




這里有幾步是我沒(méi)有理解LeNet5架構(gòu)導(dǎo)致的錯(cuò)誤,在研究了博客后,通過(guò)調(diào)試代碼,才逐步了解。







本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動(dòng)電源

在工業(yè)自動(dòng)化蓬勃發(fā)展的當(dāng)下,工業(yè)電機(jī)作為核心動(dòng)力設(shè)備,其驅(qū)動(dòng)電源的性能直接關(guān)系到整個(gè)系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動(dòng)勢(shì)抑制與過(guò)流保護(hù)是驅(qū)動(dòng)電源設(shè)計(jì)中至關(guān)重要的兩個(gè)環(huán)節(jié),集成化方案的設(shè)計(jì)成為提升電機(jī)驅(qū)動(dòng)性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機(jī) 驅(qū)動(dòng)電源

LED 驅(qū)動(dòng)電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個(gè)照明設(shè)備的使用壽命。然而,在實(shí)際應(yīng)用中,LED 驅(qū)動(dòng)電源易損壞的問(wèn)題卻十分常見,不僅增加了維護(hù)成本,還影響了用戶體驗(yàn)。要解決這一問(wèn)題,需從設(shè)計(jì)、生...

關(guān)鍵字: 驅(qū)動(dòng)電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動(dòng)電源的公式,電感內(nèi)電流波動(dòng)大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計(jì) 驅(qū)動(dòng)電源

電動(dòng)汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動(dòng)汽車的核心技術(shù)之一是電機(jī)驅(qū)動(dòng)控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機(jī)驅(qū)動(dòng)系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動(dòng)汽車的動(dòng)力性能和...

關(guān)鍵字: 電動(dòng)汽車 新能源 驅(qū)動(dòng)電源

在現(xiàn)代城市建設(shè)中,街道及停車場(chǎng)照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進(jìn)步,高亮度白光發(fā)光二極管(LED)因其獨(dú)特的優(yōu)勢(shì)逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動(dòng)電源 LED

LED通用照明設(shè)計(jì)工程師會(huì)遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動(dòng)電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動(dòng)電源的電磁干擾(EMI)問(wèn)題成為了一個(gè)不可忽視的挑戰(zhàn)。電磁干擾不僅會(huì)影響LED燈具的正常工作,還可能對(duì)周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來(lái)解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動(dòng)電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機(jī)重量也有所下降,所以,現(xiàn)在的LED驅(qū)動(dòng)電源

關(guān)鍵字: LED 驅(qū)動(dòng)電源 開關(guān)電源

LED驅(qū)動(dòng)電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動(dòng)LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動(dòng)電源
關(guān)閉