www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當前位置:首頁 > 廠商動態(tài) > ADI
[導讀]自2000年(GE)首次推出數字超聲技術以來,超聲市場發(fā)展迅速。超聲技術已從基于靜態(tài)轉向動態(tài),并從黑白轉向彩色多普勒。隨著超聲應用越來越多,對組件的要求也不斷提高,例如與探頭、AFE和電源系統(tǒng)相關的要求。


自2000年(GE)首次推出數字超聲技術以來,超聲市場發(fā)展迅速。超聲技術已從基于靜態(tài)轉向動態(tài),并從黑白轉向彩色多普勒。隨著超聲應用越來越多,對組件的要求也不斷提高,例如與探頭、AFE和電源系統(tǒng)相關的要求。

在醫(yī)療診斷領域,越來越多的應用需要超聲成像系統(tǒng)輸出更高的圖像質量。提高圖像質量的關鍵技術之一是提高系統(tǒng)的信噪比(SNR)。本文將討論影響噪聲的不同因素,特別是電源。

超聲的工作原理是什么?

超聲系統(tǒng)由換能器、發(fā)射電路、接收電路、后端數字處理電路、控制電路和顯示模塊等組成。數字處理模塊通常包含現場可編程門陣列(FPGA),FPGA根據系統(tǒng)的配置和控制參數,生成發(fā)射波束合成及相應的波形模式。發(fā)射電路中的驅動和高壓電路生成高壓信號來激勵超聲換能器。超聲換能器通常采用PZT陶瓷制成。換能器將電壓信號轉換為超聲波進入人體,同時接收人體組織產生的回波?;夭ㄞD換成微小電壓信號,并傳輸至發(fā)射/接收(T/R)開關。T/R開關的主要目的是防止高壓發(fā)射信號損壞低壓接收模擬前端。模擬電壓信號經過信號調理、放大和濾波后,傳輸至集成ADC的模擬前端,然后轉換成數字數據。數字數據通過JESD204B或LVDS接口發(fā)送到FPGA進行接收波束合成,再到后端數字部分進一步處理,從而生成超聲圖像。

圖1.超聲系統(tǒng)方框圖

電源如何影響超聲系統(tǒng)?

從上述超聲架構來看,系統(tǒng)噪聲會受到許多因素的影響,如發(fā)射信號鏈、接收信號鏈、TGC增益控制、時鐘和電源。而在本文將討論電源如何影響噪聲。

超聲系統(tǒng)提供不同類型的成像模式,每種成像模式對動態(tài)范圍有不同的要求。這也意味著,SNR或噪聲要求取決于不同的成像模式。黑白模式需要70dB動態(tài)范圍,脈沖波多普勒(PWD)模式需要130dB,連續(xù)波多普勒(CWD)模式需要160dB。對于黑白模式,本底噪聲非常重要,它會影響在遠場能夠看到的最小超聲回波的最大深度,也就是穿透,這是黑白模式的關鍵指標之一。對于PWD和CWD模式,1/f噪聲尤為重要。PWD和CWD圖像均包括1kHz以下的低頻信號,相位噪聲會影響1kHz以上的多普勒頻譜。由于超聲換能器頻率通常為1MHz至15MHz,因此該范圍內的任何開關頻率噪聲都會對其造成影響。在PWD和CWD模式中,如果在其頻譜(從100Hz至200kHz)中存在交調頻率,多普勒圖像中將會出現明顯的噪聲頻譜,這在超聲系統(tǒng)中是不可接受的。

另一方面,通過考慮和上面相同的這些因素,良好的電源可改善超聲圖像。設計人員為超聲應用設計電源時,需要考慮多個方面的因素。

開關頻率

如前所述,必須避免在采樣頻帶(200Hz至100kHz)內引入不需要的諧波噪聲。在電源系統(tǒng)中,很容易找到此類噪聲。

大多數開關穩(wěn)壓器使用電阻來設置開關頻率。該電阻的誤差會在PCB上引入包含主頻及諧波頻率的不同頻率噪聲。例如,在400kHz DC/DC穩(wěn)壓器中,1%精度電阻提供±1%誤差和4kHz諧波頻率。更好的解決方案是選擇具有同步功能的開關電源。外部時鐘將通過SYNC引腳向所有穩(wěn)壓器發(fā)送信號,使所有穩(wěn)壓器切換到相同頻率和相同相位下工作。

此外,出于EMI考量或更高的瞬態(tài)響應,一些穩(wěn)壓器的開關頻率會在主頻20%內變化,這會導致400kHz電源中產生0kHz至80kHz諧波頻率。恒頻開關穩(wěn)壓器有助于解決這一問題。ADI的Silent Switcher電源穩(wěn)壓器和電源模塊系列具有恒定頻率開關功能,同時能在不開啟擴頻的情況下,仍保持出色的EMI性能,以及出色的瞬態(tài)響應。

白噪聲

超聲系統(tǒng)中也有許多白噪聲源,這會導致超聲成像中出現背景噪聲。該噪聲主要來自信號鏈、時鐘和電源。

目前,使用LDO作為模擬器件的模擬供電引腳輸入是最常見的做法。ADI的下一代LDO穩(wěn)壓器具有大約1μV rms的超低噪聲,可以提供200mA至3A的電流。電路和規(guī)格參數如圖2和圖3所示。

圖2.下一代低噪聲LDO穩(wěn)壓器

圖3.下一代LT3045的低噪聲譜密度

PCB布局

在設計超聲系統(tǒng)中的數據采集板時,通常需要考慮電源部分的大電流和信號鏈部分的噪聲敏感之間的權衡。開關電源產生的噪聲很容易耦合到信號路徑走線中,并且很難通過數據處理去除。開關噪聲通常由開關輸入電容(圖4)以及上管和下管組成的熱回路產生。添加緩沖電路可幫助管理電磁輻射;但同時也會降低效率。在這種情況下,Silent Switcher 架構可以幫助在高開關頻率下,優(yōu)化EMI性能,并且保持高效率。

手持式數字探頭

除了因吸收超聲能量而引起的發(fā)熱,換能器本身的溫度對換能器附近人體組織的溫度影響很大。通過向換能器施加電信號,可生成超聲脈沖。有些電量在換能器基元、鏡頭和襯底材料中轉換成熱能,導致?lián)Q能器發(fā)熱。此外,對換能器探頭中收到的信號進行電子處理也可能會產生電熱。從換能器表面排出熱量會使表面組織的溫度升高幾攝氏度。IEC標準60601-2-37(2007版)中指定了最大容許換能器表面溫度(TSURF)。當換能器對著空氣發(fā)射超聲波時,換能器表面容許的最大溫度為50°C;當發(fā)射到合適的體模時,該溫度為43°C。后一項限制意味著,皮膚溫度(通常為33°C)最高可升高10°C。換能器發(fā)熱是復雜的超聲探頭設中重要的設計考量,在一些情況下,這些溫度限制可能會明顯地限制輸出的聲功率強度。

當換能器向空氣發(fā)射超聲時,安全標準IEC 60601-2-37(2007版)將換能器表面的溫度限制到50°C以下,當換能器在33°C(對于外部應用的換能器)或37°C(對于內部換能器)與體模接觸時,該標準將其表面溫度限制到43°C以下。通常這些溫度限制(而不是對波束中最大強度的限制)約束了換能器的聲功率輸出。Silent Switcher產品將電源以最高效率(和寬范圍開關頻率)轉換為不同電壓給數字探頭供電。這意味著,功率轉換期間的功率損耗很低。這對冷卻系統(tǒng)大有幫助,因為沒有太多額外功率以熱量形式損耗。

Silent Switcher模式優(yōu)勢顯著

Silent Switcher模塊技術是進行超聲電源軌設計時的明智選擇。引入該模塊技術是為了幫助改善EMI和開關頻率噪聲。傳統(tǒng)上,應該關注每個開關穩(wěn)壓器在熱回路上的電路和布局設計。對于降壓電路,如圖4所示,熱回路包含輸入電容、頂部MOSFET、底部MOSFET,以及由走線、路由、邊界(bounding)等引起的寄生電感。

圖4.拆分熱回路的原理圖

Silent Switcher模塊主要提供兩種設計方法:

第一,如圖4和圖5所示,通過創(chuàng)建反向的熱回路,由于雙向輻射,大多數EMI將被抵消。通過該方法,將優(yōu)化輻射近20dB。

圖5.比較Silent Switcher和非Silent SwitcherEMI性能

第二,如圖6所示,Silent Switcher模塊不是直接晶圓周圍綁定接線,而是采用銅柱倒裝芯片封裝,有助于減少寄生電感,優(yōu)化尖峰和死區(qū)時間。

圖6.與傳統(tǒng)綁定技術(LT8610)相比較的銅柱倒裝芯片封裝及其性能(LT8614)

此外,如圖7所示,Silent Switcher技術提供高功率密度設計,并且能夠在小封裝中實現大電流能力,從而保持低θJA,實現高效率(例如,LTM4638能夠在6.25mm × 6.25mm × 5.02mm封裝中實現15A)。

圖7.Silent Switcher電源模塊封裝內視圖

表1.Silent Switcher模塊概覽

   低頻噪聲
開關噪聲諧波
高散熱性能
架構
超低噪聲基準電流,而不是基準電壓
Silent Switcher 2與銅柱封裝
封裝中的Silent Switcher 3散熱器
特性
在低f噪聲方面,性能與LDO穩(wěn)壓器相同
低EMI,低開關噪聲
快速開關頻率,短死區(qū)
高功率密度
更小的熱阻
應用中的優(yōu)勢
不再需要后置LDO穩(wěn)壓器,同時保持相同的圖像質量
高頻率與高效率
更高的頻率,更小的濾波器尺寸
對于相同電流電平,最大程度減小降幅

表2.熱門Silent Switcher產品

   開關頻率
控制模式
開關抖動
功率級架構
EMI
有效值噪聲
LTM8053-1
200kHz至3MHz
固定頻率峰值電流

Silent Switcher 2模塊
超低
0.8μV rms(帶有LT3045)
LTM8060
200kHz至3MHz
固定頻率峰值電流

Silent Switcher 2模塊
超低
0.8μV rms(帶有LT3045)
LT8625S
300kHz至4MHz
固定頻率峰值電流

Silent Switcher 3變換器
超低
4μV rms(不帶LT3045)

此外,許多Silent Switcher模塊也具有固定頻率、寬頻率范圍和峰值電流架構,從而實現低抖動和快速瞬態(tài)響應。該產品系列中的熱門產品參見表2。

結論

ADI的Silent Switcher電源模塊和LDO產品為超聲電源軌設計提供了完整的解決方案,盡可能減少了系統(tǒng)噪聲水平和開關噪聲,不僅有助于改善圖像質量,限制溫度升高,還簡化了PCB布局設計的復雜性。


本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內容真實性等。需要轉載請聯(lián)系該專欄作者,如若文章內容侵犯您的權益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: 驅動電源

在工業(yè)自動化蓬勃發(fā)展的當下,工業(yè)電機作為核心動力設備,其驅動電源的性能直接關系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅動電源設計中至關重要的兩個環(huán)節(jié),集成化方案的設計成為提升電機驅動性能的關鍵。

關鍵字: 工業(yè)電機 驅動電源

LED 驅動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設備的使用壽命。然而,在實際應用中,LED 驅動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設計、生...

關鍵字: 驅動電源 照明系統(tǒng) 散熱

根據LED驅動電源的公式,電感內電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關鍵字: LED 設計 驅動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產業(yè)的重要發(fā)展方向。電動汽車的核心技術之一是電機驅動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅動系統(tǒng)中的關鍵元件,其性能直接影響到電動汽車的動力性能和...

關鍵字: 電動汽車 新能源 驅動電源

在現代城市建設中,街道及停車場照明作為基礎設施的重要組成部分,其質量和效率直接關系到城市的公共安全、居民生活質量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關鍵字: 發(fā)光二極管 驅動電源 LED

LED通用照明設計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數校正(PFC)、空間受限和可靠性等。

關鍵字: LED 驅動電源 功率因數校正

在LED照明技術日益普及的今天,LED驅動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關鍵字: LED照明技術 電磁干擾 驅動電源

開關電源具有效率高的特性,而且開關電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現在的LED驅動電源

關鍵字: LED 驅動電源 開關電源

LED驅動電源是把電源供應轉換為特定的電壓電流以驅動LED發(fā)光的電壓轉換器,通常情況下:LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: LED 隧道燈 驅動電源
關閉