www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當(dāng)前位置:首頁 > 模擬 > 模擬
[導(dǎo)讀]電橋是精密測(cè)量電阻或其他模擬量的一種有效的方法。本文介紹了如何實(shí)現(xiàn)具有較大信號(hào)輸出的硅應(yīng)變計(jì)與模數(shù)轉(zhuǎn)換器(ADC)的接口,特別是Σ-Δ ADC,當(dāng)使用硅應(yīng)變計(jì)時(shí),它是一種實(shí)現(xiàn)壓力變送器的低成本方案硅應(yīng)

電橋是精密測(cè)量電阻或其他模擬量的一種有效的方法。本文介紹了如何實(shí)現(xiàn)具有較大信號(hào)輸出的硅應(yīng)變計(jì)與模數(shù)轉(zhuǎn)換器(ADC)的接口,特別是Σ-Δ ADC,當(dāng)使用硅應(yīng)變計(jì)時(shí),它是一種實(shí)現(xiàn)壓力變送器的低成本方案

硅應(yīng)變計(jì)

硅應(yīng)變計(jì)的優(yōu)點(diǎn)在于高靈敏度,它通過感應(yīng)由應(yīng)力引發(fā)的硅材料體電阻變化來檢測(cè)壓力。相比于金屬箔或粘貼絲式應(yīng)變計(jì),其輸出通常要大一個(gè)數(shù)量級(jí)。這種硅應(yīng)變計(jì)的輸出信號(hào)較大,可以與較廉價(jià)的電子器件配套使用。但是,這些小而脆器件的安裝和連線非常困難,因而增加了成本,限制了它們?cè)谡迟N式應(yīng)變計(jì)應(yīng)用中的使用。

不過,用MEMS工藝制作的硅壓力傳感器卻克服了這些弊病。這種MEMS壓力傳感器采用了標(biāo)準(zhǔn)的半導(dǎo)體工藝和特殊的蝕刻技術(shù)。這種特殊的蝕刻技術(shù)可選擇性地從晶圓的背面除去一部分硅,從而生成由堅(jiān)固的硅邊框包圍的、數(shù)以百計(jì)的方形薄膜。而在晶圓的正面,每一個(gè)小薄膜的每個(gè)邊上都植入了一個(gè)壓敏電阻,用金屬線把小薄片周邊的四個(gè)電阻連接起來就形成一個(gè)惠斯登電橋。最后,使用鉆石鋸從晶圓上鋸下各個(gè)傳感器。這時(shí),硅傳感器已經(jīng)初具形態(tài),但還需要配備壓力端口和連接引線方可使用。這些小傳感器便宜而且相對(duì)可靠,但受溫度變化影響較大,而且初始偏移和靈敏度的偏差很大。

壓力傳感器實(shí)例

在此給出一個(gè)壓力傳感器的實(shí)例,其所涉及的原理適用于任何使用類似電橋的傳感器。公式1給出了一個(gè)原始的壓力傳感器的輸出模型。其中,VOUT在給定壓力P下具有很寬的變化范圍,不同傳感器在同一溫度下,或者同一傳感器在不同溫度下,其VOUT都有所不同。因此要提供一個(gè)一致的、有意義的輸出,每個(gè)傳感器都必須進(jìn)行校正,以補(bǔ)償器件之間的差異和溫度漂移。長(zhǎng)期以來,校準(zhǔn)都是通過模擬電路進(jìn)行的。然而,現(xiàn)代電子學(xué)的進(jìn)展使得數(shù)字校準(zhǔn)比模擬校準(zhǔn)更具成本效益,而且其準(zhǔn)確性也更好。此外,利用一些模擬技術(shù)“竅門”,可以在不犧牲精度的前提下簡(jiǎn)化數(shù)字校準(zhǔn)。

VOUT=VB(PS0(1+S1(T-T0))+U0+U1(T-T0)) (1)

式中,VOUT為電橋輸出,VB是電橋的激勵(lì)電壓,P是外加壓力,T0是參考溫度,S0是T0溫度下的靈敏度,S1是靈敏度的溫度系數(shù)(TCS),U0是在無壓力情況下電橋在溫度T0時(shí)的輸出偏移量(或失衡),而U1則是偏移量的溫度系數(shù)(OTC)。公式(1)使用一次多項(xiàng)公式來對(duì)傳感器進(jìn)行建模,而有些應(yīng)用場(chǎng)合可能會(huì)用到高次多項(xiàng)公式、分段線性技術(shù)或者分段二次逼近模型,并為其中的系數(shù)建立一個(gè)查尋表。無論使用哪種模型,數(shù)字校準(zhǔn)時(shí)都要對(duì)VOUT、VB和T進(jìn)行數(shù)字化,同時(shí)要采用某種方公式來確定全部系數(shù)并進(jìn)行必要的計(jì)算。公式(2)由公式(1)變化所得,從中可清楚地看到,通過數(shù)字計(jì)算(通常由微控制器(MCU)執(zhí)行)而輸出精確壓力值所需的信息。

P=(VOUT/VB-U0-U1(T-T0))/(S0(1+S1(T-T0)) (2)

電壓驅(qū)動(dòng)

 

 

圖1 該電路直接測(cè)量計(jì)算實(shí)際壓力所需的變量(激勵(lì)電壓、溫度和電橋輸出)

在圖1所示的電路中,一個(gè)高精度ADC先對(duì)VOUT (AIN1/AIN2)、溫度(AIN3/AIN4)和VB (AIN5/AIN6)進(jìn)行數(shù)字化,這些測(cè)量值隨后被傳送到MCU,在那里轉(zhuǎn)換成實(shí)際的壓力。電橋直接由電源驅(qū)動(dòng),電源同時(shí)也為ADC、電壓基準(zhǔn)源和 MCU供電。電阻公式溫度檢測(cè)器Rt用來測(cè)量溫度,ADC內(nèi)的輸入復(fù)用器同時(shí)測(cè)量電橋、RTD和電源電壓。為確定校準(zhǔn)系數(shù),整個(gè)系統(tǒng)(或至少是RTD和電橋)被放到恒溫箱里,在多個(gè)不同溫度下進(jìn)行測(cè)量。測(cè)量數(shù)據(jù)通過測(cè)試系統(tǒng)進(jìn)行處理,以確定校準(zhǔn)系數(shù),最終的系數(shù)被下載到MCU并存儲(chǔ)到非易失性存儲(chǔ)器中。

設(shè)計(jì)該電路時(shí)主要考慮的是動(dòng)態(tài)范圍和ADC的分辨率,最低要求取決于具體應(yīng)用和所選的傳感器和RTD的參數(shù)。在本例中,傳感器的具體參數(shù)如下。

系統(tǒng)規(guī)格

· 滿量程壓力:100psi

· 壓力分辨率:0.05psi

· 溫度范圍:-40~+85℃

· 電源電壓:4.75~5.25V

壓力傳感器規(guī)格

· S0 (靈敏度): 150~300μV/V/psi

· S1(靈敏度的溫度系數(shù)): 最大為-2500×10-6/℃

· U0 (偏移): -3~+3mV/V

· U1 (偏移的溫度系數(shù)): -15~+15μV/V/℃

· RB (輸入電阻): 4.5kΩ

· TCR (電阻溫度系數(shù)): 1200×10-6/℃

· RTD: PT100

o α: 3850×10-6/℃

o -40℃時(shí)的阻值: 84.27Ω

o 0℃時(shí)阻值: 100Ω

o 85℃時(shí)阻值: 132.80Ω

電壓分辨率

ADC能夠接受的最小電壓分辨率可根據(jù)傳感器能夠檢測(cè)到的最小壓力變化所對(duì)應(yīng)的VOUT得到。極端情況為使用最低靈敏度的傳感器,在最高溫度和最低供電電壓下進(jìn)行測(cè)量。注意,公式(1)中的偏移項(xiàng)不影響分辨率,因?yàn)榉直媛蕛H與壓力響應(yīng)有關(guān)。使用公式(1)以及上述假設(shè)可得:

VOUTmin=4.75V×(0.05psi/count×150μV/V/psi×(1+(-2500×10-6/℃)×(85℃-25℃))

≈30.3μV/count

所以,最低ADC電壓分辨率為30μV/ count。

ADC的輸入范圍

ADC的輸入范圍取決于最大輸入電壓和最小電壓。根據(jù)公式1,產(chǎn)生最大VOUT的條件:最大壓力100psi、最低溫度- 40℃、最大電源電壓5.25V和3mV/V的偏移、-15μV/V/℃的偏移溫度系數(shù)、-2500×10-6/℃的TCS以及 300μV/V/psi的最高靈敏度。最小信號(hào)一般都在無壓力(P=0),電源電壓為5.25V、-3mV/V的偏移、-40℃的溫度以及OTC等于+ 15μV/V/℃的情況下出現(xiàn)。

再次使用公式(1)以及上述假設(shè)可得:

VOUTmax=5.25V×(100psi×300μV/V/psi×(1+(-2500×10-6/℃)× (-40℃-25℃))+3mV/V+(-0.015mV/V/℃)×(-40℃-25℃))=204mV

VOUTmin = 5.25×(-3mV/V + ( 0.015mV/V/℃×(-40℃-25℃)))=-21mV

因此,ADC的輸入范圍是-21~+204mV。

分辨率

適用于本應(yīng)用的ADC應(yīng)具有-21~+204mV 的輸入范圍和30μV/count的電壓分辨率。該ADC的編碼總數(shù)為(204mV + 21mV)/(30μV/count)=7500,動(dòng)態(tài)范圍稍低于13位。如果傳感器的輸出范圍與ADC的輸入范圍完全匹配,那么一個(gè)13位的轉(zhuǎn)換器就可以滿足需要。由于-21~+204mV的量程與通常的ADC輸入范圍都不匹配,因此要么對(duì)輸入信號(hào)進(jìn)行電平移動(dòng)和放大,要么選用更高分辨率的ADC。幸運(yùn)的是,當(dāng)前Σ-Δ轉(zhuǎn)換器的分辨率很高,具有雙極性輸入和內(nèi)部放大器,使高分辨率ADC的使用變?yōu)楝F(xiàn)實(shí)。這些Σ-ΔADC提供了更為經(jīng)濟(jì)的方案,而不需要增加其他元器件。這不僅減小了電路板尺寸,還避免了放大和電平移位電路所引入的漂移誤差。

工作于5V電源的典型Σ-Δ轉(zhuǎn)換器,采用2.5V參考電壓,具有±2.5V的輸入電壓范圍。為了滿足我們對(duì)于壓力傳感器分辨率的要求,這種ADC的動(dòng)態(tài)范圍應(yīng)當(dāng)是:(2.5V - (- 2.5V)) /(30μV/count)=166 667,這相當(dāng)于17.35位的分辨率,很多ADC都能滿足該要求,例如18位的MAX1400。如果選用SAR ADC,則產(chǎn)生很大的浪費(fèi),因?yàn)檫@是將18位轉(zhuǎn)換器用于13位應(yīng)用,且只產(chǎn)生11位的結(jié)果。然而,選用18位(17位加上符號(hào)位)的Σ-Δ轉(zhuǎn)換器更為現(xiàn)實(shí),盡管三個(gè)最高位其實(shí)并沒有使用。因?yàn)槌肆畠r(jià)外,Σ-Δ轉(zhuǎn)換器還具有高輸入阻抗和很好的噪聲抑制特性。

18位ADC可以用內(nèi)置放大器的低分辨率轉(zhuǎn)換器來代替,例如16位的MAX1416。其8倍的增益相當(dāng)于將ADC轉(zhuǎn)換結(jié)果向高位移了3位,從而利用了全部的轉(zhuǎn)換位并將轉(zhuǎn)換需求減少到15位。不過要選用無增益的高分辨率轉(zhuǎn)換器,還是有增益的低分辨率轉(zhuǎn)換器,就要看具體情況下的增益和轉(zhuǎn)換速率下的噪聲規(guī)格。Σ-Δ轉(zhuǎn)換器的有效分辨率通常受到噪聲的限制。

溫度測(cè)量

如果測(cè)量溫度僅僅是為了對(duì)壓力傳感器進(jìn)行補(bǔ)償,那么溫度測(cè)量不要求十分準(zhǔn)確,只要測(cè)量結(jié)果與溫度的對(duì)應(yīng)關(guān)系具有足夠的可重復(fù)性即可,這樣將會(huì)有更大的靈活性和較寬松的設(shè)計(jì)要求。對(duì)于硅壓力傳感器,有三個(gè)基本的設(shè)計(jì)要求:避免自加熱,具有足夠的溫度分辨率,保證在ADC的測(cè)量范圍之內(nèi)。

使最大Vt電壓接近于最大壓力信號(hào)有利于采用相同的ADC和內(nèi)部增益來測(cè)量溫度和壓力。本例中的最大輸入電壓為+ 204mV,考慮到電阻的誤差,最高溫度信號(hào)電壓可保守地選擇為+180mV。將Rt上的電壓限制到+180mV也有利于避免Rt的自加熱問題。一旦最大電壓選定,根據(jù)在85℃ (Rt=132.8Ω),VB=5.25V的條件下產(chǎn)生該最大電壓可以計(jì)算得到R1。R1的值可通過公式(3)進(jìn)行計(jì)算,公式中的Vtmax是RT上所允許的最大壓降。溫度分辨率等于ADC的電壓分辨率除以Vt的溫度敏感度。公式(4)給出了溫度分辨率的計(jì)算方法。(注意:本例計(jì)算的是最小電壓分辨率,是一種較為保守的設(shè)計(jì)。你也可以使用實(shí)際的ADC無噪聲分辨。)

R1= Rt×(VB/Vtmax-1) (3)

R1=132.8Ω×(5.25V/0.18V-1)≈3.7kΩ

TRES=VRES×(R1 + Rt)2/(VB×R1×ΔRt/℃) (4)

這里,TRES是ADC所能分辨的攝氏溫度測(cè)量分辨率。

TRES=30μV/count×(3700Ω+ 132.8Ω)2/(4.75V×3700Ω×0.38Ω/℃)≈0.07℃/count

0.07℃的溫度分辨率足以滿足大多數(shù)應(yīng)用的要求。但是,如果需要更高的分辨率,有以下幾個(gè)選擇:使用一個(gè)更高分辨率的ADC;將RTD換成熱敏電阻,或?qū)TD用于電橋,以便在ADC中能夠使用更高的增益。

注意,要得到有用的溫度結(jié)果,軟件必須對(duì)供電電壓的變化進(jìn)行補(bǔ)償。另外一種代替方法是將R1連接到VREF,而不是VB。這樣可使Vt不依賴于VB,但也增加了參考電壓的負(fù)載。

結(jié)論

硅壓阻公式應(yīng)變計(jì)比較高的輸出幅度使其可以直接和低成本、高分辨率Σ-ΔADC接口。這樣避免了放大和電平移位電路帶來的成本和誤差。另外,這種應(yīng)變計(jì)的熱特性和ADC的比例特性可被用來顯著降低高精度電路的復(fù)雜程度。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

深圳2025年9月3日 /美通社/ -- 全球可穿戴眼動(dòng)追蹤解決方案領(lǐng)軍創(chuàng)新企業(yè)見臻科技(Ganzin Technology),今日于深圳光博會(huì)展隆重發(fā)布其突破性的 Gaze2AI?參考設(shè)計(jì)。該方案基于高性能 AUROR...

關(guān)鍵字: AI 參考設(shè)計(jì) TIMES 攝像頭

上海2025年9月1日 /美通社/ -- 8月29日,由國(guó)際獨(dú)立第三方檢測(cè)、檢驗(yàn)和認(rèn)證機(jī)構(gòu)德國(guó)萊茵TÜV大中華區(qū)(簡(jiǎn)稱"TÜV萊茵")...

關(guān)鍵字: 工程師 REGULATION 基礎(chǔ)知識(shí) 智能化

上海2025年7月29日 /美通社/ -- 7月27日,以"AI向善她向新:數(shù)智女性的未來"為主題的2025世界人工智能大會(huì)暨人工智能全球治理高級(jí)別會(huì)議?...

關(guān)鍵字: 人工智能 AI 智能科技 MIDDOT

佛山 2025年5月28日 /美通社/ -- 5月27日,第29屆中國(guó)國(guó)際廚房、衛(wèi)浴設(shè)施展覽會(huì)(KBC)在上海新國(guó)際博覽中心開幕。恒潔作為衛(wèi)浴行業(yè)的領(lǐng)軍者與品質(zhì)生活方式品牌的代表,亮相W2館B03展館,以“總有美好在此...

關(guān)鍵字: 沉浸式體驗(yàn) 溫度 MIDDOT LED

北京 2025年4月28日 /美通社/ -- 2025年4月18日,北京工商大學(xué)"益普索?立豐樓"(原數(shù)學(xué)與統(tǒng)計(jì)學(xué)院樓)冠名揭牌儀式在良鄉(xiāng)校區(qū)舉行。北京工商大學(xué)黨委副書記、校長(zhǎng)郭建華,黨委常委、副校...

關(guān)鍵字: 大賽 MIDDOT 人工智能技術(shù) AI

深圳2025年4月7日 /美通社/ -- 在全球科技浪潮與可持續(xù)轉(zhuǎn)型的雙輪驅(qū)動(dòng)下,CHINAPLAS 2025將精心打造一系列精彩紛呈的同期活動(dòng),聚焦塑料和橡膠行業(yè)的最新突破與前沿趨勢(shì)。"CHINAPLAS 2...

關(guān)鍵字: CHINA 新材料 終端 TIMES

阿聯(lián)酋阿布扎比2025年3月21日 /美通社/ -- 全球數(shù)字化、機(jī)器人自動(dòng)化研發(fā)平臺(tái)領(lǐng)軍企業(yè)晶泰科技(股票代碼:2228.HK)與阿聯(lián)酋王室謝赫?哈馬德辦公室(Sheikh...

關(guān)鍵字: 機(jī)器人 自動(dòng)化 泰科 MIDDOT

深圳2025年1月24日 /美通社/ -- 在智能穿戴設(shè)備的設(shè)計(jì)中,每一毫米都至關(guān)重要。隨著AI技術(shù)的深度融入,智能穿戴設(shè)備不僅需要更強(qiáng)大的性能,還需要在極其有限的空間內(nèi)實(shí)現(xiàn)更多功能。近日,江波龍推出了7.2mm&tim...

關(guān)鍵字: EMMC 智能穿戴設(shè)備 TIMES GB

北京2025年1月21日 /美通社/ --?近年來的技術(shù)融合和突破,我們已經(jīng)可以清晰地感受到AI革命的指數(shù)級(jí)趨勢(shì)。創(chuàng)投行業(yè),作為技術(shù)革新的瞭望者、經(jīng)濟(jì)繁榮的推動(dòng)者、社會(huì)進(jìn)步的參與者,站在新技術(shù)轉(zhuǎn)捩和新周期轉(zhuǎn)換的關(guān)鍵時(shí)刻,...

關(guān)鍵字: 創(chuàng)始人 GP 人工智能 MIDDOT

科學(xué)顧問委員會(huì)成員來到Syenqo在華研發(fā)中心,探討行業(yè)技術(shù)發(fā)展方向、人工智能的應(yīng)用,支持企業(yè)創(chuàng)新,推動(dòng)行業(yè)進(jìn)步 上海2024年11月25日 /美通社/ -- 2024年11月19日,Syensqo在上海研發(fā)創(chuàng)新中心召...

關(guān)鍵字: AN MIDDOT 人工智能 RIM
關(guān)閉