www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當前位置:首頁 > 智能硬件 > 智能硬件
[導讀]我們可以對神經網絡架構進行優(yōu)化,使之適配微控制器的內存和計算限制范圍,并且不會影響精度。我們將在本文中解釋和探討深度可分離卷積神經網絡在 Cortex-M 處理器上實現(xiàn)關鍵詞識別的潛力。

我們可以對神經網絡架構進行優(yōu)化,使之適配微控制器的內存和計算限制范圍,并且不會影響精度。我們將在本文中解釋和探討深度可分離卷積神經網絡在 Cortex-M 處理器上實現(xiàn)關鍵詞識別的潛力。

關鍵詞識別 (KWS) 對于在智能設備上實現(xiàn)基于語音的用戶交互十分關鍵,需要實時響應和高精度,才能確保良好的用戶體驗。最近,神經網絡已經成為 KWS 架構的熱門選擇,因為與傳統(tǒng)的語音處理算法相比,神經網絡的精度更勝一籌。

關鍵詞識別神經網絡管道

由于要保持“永遠在線”,KWS 應用的功耗預算受到很大限制。雖然 KWS 應用也可在專用 DSP 或高性能 CPU 上運行,但更適合在 Arm Cortex-M 微控制器上運行,有助于最大限度地降低成本,Arm Cortex-M 微控制器經常在物聯(lián)網邊緣用于處理其他任務。

但是,要在基于 Cortex-M 的微控制器上部署基于神經網絡的 KWS,我們面臨著以下挑戰(zhàn):

1. 有限的內存空間

典型的 Cortex-M 系統(tǒng)最多提供幾百 KB 的可用內存。這意味著,整個神經網絡模型,包括輸入/輸出、權重和激活,都必須在這個很小的內存范圍內運行。

2. 有限的計算資源

由于 KWS 要保持永遠在線,這種實時性要求限制了每次神經網絡推理的總運算數(shù)量。

以下是適用于 KWS 推理的典型神經網絡架構:

· 深度神經網絡 (DNN)

DNN 是標準的前饋神經網絡,由全連接層和非線性激活層堆疊而成。

· 卷積神經網絡 (CNN)

基于 DNN 的 KWS 的一大主要缺陷是無法為語音功能中的局域關聯(lián)性、時域關聯(lián)性、頻域關聯(lián)性建模。CNN 則可將輸入時域和頻域特征當作圖像處理,并且在上面執(zhí)行 2D 卷積運算,從而發(fā)現(xiàn)這種關聯(lián)性。

· 循環(huán)神經網絡 (RNN)

RNN 在很多序列建模任務中都展現(xiàn)出了出色的性能,特別是在語音識別、語言建模和翻譯中。RNN 不僅能夠發(fā)現(xiàn)輸入信號之間的時域關系,還能使用“門控”機制來捕捉長時依賴關系。

· 卷積循環(huán)神經網絡 (CRNN)

卷積循環(huán)神經網絡是 CNN 和 RNN 的混合,可發(fā)現(xiàn)局部時間/空間關聯(lián)性。CRNN 模型從卷積層開始,然后是 RNN,對信號進行編碼,接下來是密集全連接層。

· 深度可分離卷積神經網絡 (DS-CNN)

最近,深度可分離卷積神經網絡被推薦為標準 3D 卷積運算的高效替代方案,并已用于實現(xiàn)計算機視覺的緊湊網絡架構。

DS-CNN 首先使用獨立的 2D 濾波,對輸入特征圖中的每個通道進行卷積計算,然后使用點態(tài)卷積(即 1x1),合并縱深維度中的輸出。通過將標準 3D 卷積分解為 2D和后續(xù)的 1D,參數(shù)和運算的數(shù)量得以減少,從而使得更深和更寬的架構成為可能,甚至在資源受限的微控制器器件中也能運行。

在 Cortex-M 處理器上運行關鍵詞識別時,內存占用和執(zhí)行時間是兩個最重要因素,在設計和優(yōu)化用于該用途的神經網絡時,應該考慮到這兩大因素。以下所示的神經網絡的三組限制分別針對小型、中型和大型 Cortex-M 系統(tǒng),基于典型的 Cortex-M 系統(tǒng)配置。

KWS 模型的神經網絡類別 (NN) 類別,假定每秒 10 次推理和 8 位權重/激活

要調節(jié)模型,使之不超出微控制器的內存和計算限制范圍,必須執(zhí)行超參數(shù)搜索。下表顯示了神經網絡架構及必須優(yōu)化的相應超參數(shù)。

神經網絡超參數(shù)搜索空間

首先執(zhí)行特征提取和神經網絡模型超參數(shù)的窮舉搜索,然后執(zhí)行手動選擇以縮小搜索空間,這兩者反復執(zhí)行。下圖總結了適用于每種神經網絡架構的最佳性能模型及相應的內存要求和運算。DS-CNN 架構提供最高的精度,而且需要的內存和計算資源也低得多。

最佳神經網絡模型中內存與運算/推理的關系

 

KWS 應用部署在基于 Cortex-M7 的 STM32F746G-DISCO 開發(fā)板上(如下圖所示),使用包含 8 位權重和 8 位激活的 DNN 模型,KWS 在運行時每秒執(zhí)行 10 次推理。每次推理(包括內存復制、MFCC 特征提取、DNN 執(zhí)行)花費大約 12 毫秒。為了節(jié)省功耗,可讓微控制器在余下時間處于等待中斷 (WFI) 模式。整個 KWS 應用占用大約 70 KB 內存,包括大約 66 KB 用于權重、大約 1 KB 用于激活、大約 2 KB 用于音頻 I/O 和 MFCC 特征。

Cortex-M7 開發(fā)板上的 KWS 部署

總而言之,Arm Cortex-M 處理器可以在關鍵詞識別應用中達到很高的精度,同時通過調整網絡架構來限制內存和計算需求。DS-CNN 架構提供最高的精度,而且需要的內存和計算資源也低得多。

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內容真實性等。需要轉載請聯(lián)系該專欄作者,如若文章內容侵犯您的權益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或將催生出更大的獨角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉型技術解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術公司SODA.Auto推出其旗艦產品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關鍵字: 汽車 人工智能 智能驅動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務中斷的風險,如企業(yè)系統(tǒng)復雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務連續(xù)性,提升韌性,成...

關鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據媒體報道,騰訊和網易近期正在縮減他們對日本游戲市場的投資。

關鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據產業(yè)博覽會開幕式在貴陽舉行,華為董事、質量流程IT總裁陶景文發(fā)表了演講。

關鍵字: 華為 12nm EDA 半導體

8月28日消息,在2024中國國際大數(shù)據產業(yè)博覽會上,華為常務董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權最終是由生態(tài)的繁榮決定的。

關鍵字: 華為 12nm 手機 衛(wèi)星通信

要點: 有效應對環(huán)境變化,經營業(yè)績穩(wěn)中有升 落實提質增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務引領增長 以科技創(chuàng)新為引領,提升企業(yè)核心競爭力 堅持高質量發(fā)展策略,塑強核心競爭優(yōu)勢...

關鍵字: 通信 BSP 電信運營商 數(shù)字經濟

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術學會聯(lián)合牽頭組建的NVI技術創(chuàng)新聯(lián)盟在BIRTV2024超高清全產業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術創(chuàng)新聯(lián)...

關鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(集團)股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關鍵字: BSP 信息技術
關閉
關閉