www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當前位置:首頁 > EDA > 電子設(shè)計自動化
[導(dǎo)讀]1 PCI接口設(shè)計原理1.1 PCI總線協(xié)議簡介這里只討論PCI總線2.0協(xié)議,其它協(xié)議僅僅是在2.0的基礎(chǔ)上作了一些擴展,僅就單片機與PCI設(shè)備間的通信來說,意義不大。PCI總線是高性能局部總線,工作頻率0~33MHz,可同時支持多

1 PCI接口設(shè)計原理

1.1 PCI總線協(xié)議簡介

這里只討論PCI總線2.0協(xié)議,其它協(xié)議僅僅是在2.0的基礎(chǔ)上作了一些擴展,僅就單片機與PCI設(shè)備間的通信來說,意義不大。PCI總線是高性能局部總線,工作頻率0~33MHz,可同時支持多組外圍設(shè)備。在這里,我們只關(guān)心單片機與一個PCI設(shè)備間通信的情況,而且是以單片機與CPLD一方作為主控方,另一方作為PCI從設(shè)備。這樣做的目的是為了簡化問題,降低系統(tǒng)造價。

PCI總線上信號線雖多,但并不是每個信號都要用到。實際上PCI設(shè)備也并不會支持所有的信號線,比如錯誤報告信號PERR與SERR在網(wǎng)卡中就不支持。我們可以針對具體的應(yīng)用選擇支持其中部分信號線,還有一些信號線可以直接連電源或接地。下面簡單介紹一下常用信號線的功能。

AD[31~0]:地址數(shù)據(jù)多路復(fù)用信號。在FRAME有效的第一個周期為地址,在IRDY與TRDY同時有效的時候為數(shù)據(jù)。

C/BE[3~0]:總線命令與字節(jié)使能控制信號。在地址其中傳輸?shù)氖强偩€命令;在數(shù)據(jù)期內(nèi)是字節(jié)使能控制信號,表示AD[31~0]中那些字節(jié)是有效數(shù)據(jù)。表1是總線命令編碼的說明。

PCI總線上所有的數(shù)據(jù)傳輸基本上都由以下三條信號線控制。

FRAME:幀周期信號。由主設(shè)備驅(qū)動,表示一次訪問的開始和持續(xù)時間,F(xiàn)RAME有效時(0為有效,下同),表示數(shù)據(jù)傳輸進行中,失效后,為數(shù)據(jù)傳輸最后一個周期。

IRD:主設(shè)備準備好信號。由主設(shè)備驅(qū)動,表示主設(shè)備已經(jīng)準備好進行數(shù)據(jù)傳輸。

TRDY:從設(shè)備準備好信號。由從主設(shè)備驅(qū)動,表示從設(shè)備已經(jīng)準備好進行數(shù)據(jù)傳輸。當IRDY與TRDY同時有效時,數(shù)據(jù)傳輸才會真正發(fā)生。

另外,還有IDSEL信號用來在配置空間讀寫期間作為片選信號。對于只有一個PCI從設(shè)備的情況,它總可以接高電平。IDSEL信號由從設(shè)備驅(qū)動,表示該設(shè)備已成為當前訪問的從設(shè)備,可以不理會。

在PCI總線上進行讀寫操作時,PCI總線上的各種信號除了RST、IRQ、IRQC、IRQ之外,只有時鐘的下降沿信號會發(fā)生變化,而在時鐘上升沿信號必須保持穩(wěn)定。

1.2 CPLD設(shè)計規(guī)劃

出于對單片機和CPLD處理能力和系統(tǒng)成本的考慮,下面的規(guī)劃不支持PCI總線的線性突傳輸?shù)刃枰B續(xù)幾個數(shù)據(jù)周期的讀寫方式,而僅支持一個址周期加一個數(shù)據(jù)周期的讀寫方式。對于大部分應(yīng)用而言,這種方式已經(jīng)足夠了。       在CPLD內(nèi)設(shè)有13個8位寄存器用來保存進行一次PCI總線讀寫時所需要的數(shù)據(jù),其中pci_address0~pci_address3是讀寫時的地址數(shù)據(jù);pcidatas0~pci_datas3是要往PCI設(shè)備寫的數(shù)據(jù);pci_cbe[3~0]保存[NextPage]本文相關(guān)DataSheet:MAX7000    EPM7128地址周期時的總線命令,PCI_cbe[7~4]保存數(shù)據(jù)周期時的字節(jié)使能命令;pci_data0~pci_data3保存從PCI設(shè)備返回的數(shù)據(jù);pci_request是PCI總線讀寫操作狀態(tài)寄存器,用于向單片機返回一些信息。當單片機往pci_cbe寄存器寫入一個字節(jié)的時候,會復(fù)位CPLD中的狀態(tài)機,觸發(fā)CPLD進行PCI總線的讀寫操作;單片機則通過查詢pci_request寄存器得知讀寫操作完成,再從pci_data寄存器讀出PCI設(shè)備返回的數(shù)據(jù)。

CPLD中狀態(tài)機的狀態(tài)轉(zhuǎn)移圖如圖3所示。每一個狀態(tài)對應(yīng)FRAME與IRD信號的一種輸出,而其它輸入輸出信號線可由這兩個信號線和pci_cbe的值及TRDY的狀態(tài)決定。當FRAME為有效時,AD[31~0]由pci_address驅(qū)動,而C/BE[3~0]由pci_cbe低4位驅(qū)動;當IRDY有效時,C/BE[3~0]視總線命令,要么由pci_cbe高4位驅(qū)動,要么設(shè)為高阻態(tài),而AD[31~0]在pci_cbe[0]為“0”時,(PCI讀命令)設(shè)為高阻態(tài),而在pci_cbe[0]為“1”時(PCI讀命令)由pci_datas驅(qū)動。另外一方面,一旦TRDY信號線變?yōu)榈碗娖?,AD[31~0]線上的數(shù)據(jù)被送入pci_data寄存器,而C/BE[3~0]線上的數(shù)據(jù)被送入pci_request寄存器的低4位。

考慮到在不正常情況下,PCI設(shè)備不會對PCI總線作出響應(yīng),即TRDY不會有效,為了不使狀態(tài)機陷入狀態(tài)S2的僵持局面,另外增設(shè)了一個移位計數(shù)器mycounter。當IRD信號有效時,計數(shù)器開始計數(shù)。計數(shù)溢出之后,不論PCI總線操作是否完成,狀態(tài)機都會從狀態(tài)S2轉(zhuǎn)移到狀態(tài)S3,即結(jié)束PCI總線操作。當TRDY有效時,會立即置位mycounter.cout。

PCI總線操作是否正確完成,可查詢pci_request的最高位是否為“1”,而IRDY與FRAME的值可分別查詢pci_request的第4位和第5位。這兩位反映了PCI總線操作所處的狀態(tài),兩位都為“1”時可以認為PCI總線操作已經(jīng)完成。在實踐中,如果單片機的速度不是足夠快的話,可以認為PCI總線操作總是即時完成的。這幾位的實現(xiàn)可參考源程序。

2 PCI設(shè)計接口實現(xiàn)

2.1 CPLD ABEL HDL程序設(shè)計

我們針對8位單片機控制PCI以太網(wǎng)卡進行了程序設(shè)計,CPLD器件選用ALTERA的MAX7000系列。針對以太網(wǎng)卡的特點在邏輯上進行了再次簡化,最張程序?qū)⑦m配進EPM7128芯片中,并在實踐中檢驗通過。

以太網(wǎng)卡僅支持對配置空間和I/O空間的讀寫操作,而且這兩個空間的地址都可以設(shè)置在0xFF以內(nèi),所以可以只用一個pci_address0寄存器,其它地址都直接設(shè)為“0”;如果再限制,每次只往網(wǎng)卡寫入一個字節(jié)數(shù)據(jù),則可以只用一個pci_datas0寄存器,其它數(shù)值在具體操作時設(shè)成與pci_datas0寄存器的一樣即可。

以下是ABEL HDL主要源碼。其中16dmux是4~16位譯碼器,用于地址譯碼,選通CPLD內(nèi)的寄存器;8dffe是8位的DFFE;abelcounter是8位移位計數(shù)器;mylatch8與mylatch1分別為8位與1位鎖存器,而mylatchc是帶清零1位鎖存器;其它以“my”開始的變量都是三態(tài)緩沖器,以“out”開始的變量是三態(tài)節(jié)點,以“e”開始的變量是普通節(jié)點。這此在程序中不再聲明。
SUBDESIGN abelpci

P2[7..3] : INPUT;
READ0 : INPUT
WRITE0 : INPUT;
P0[7..0] : BIDIR;
CLK : INPUT;
TRDY0 : INPUT;
AD[31..] : BIDIR;
CBE[3..0] : BIDIR;
IRDY0 : OUTPUT;
FRAME0 : OUTPUT;
)


VARIABLE
decoder : 16dmux;
mycounter : abelcounter;
pci_c[NextPage]本文相關(guān)DataSheet:MAX7000    EPM7128   
be : 8DFFE;
PCI_address0 : 8DFFE;
pci_datas0 : 8DFFE;
pci_request[6..0] : mylatch1;
pci_request7 : mylatchc;
pci_data0 : mylatch8;
pci_data1 : mylatch8;
pci_data2 : mylatch8;
pci_data3 : mylatch8;
ss : MACHINE OF BITS (FRAME0,IRDY0)
WITH STATES(s0 = B"11",
s1=B"01");
s2=B"10";
S3=B"11");
BEGIN
decoder.(d,c,b,a)=P2[6..3];
enareg[]=decoder.q[];
pci_che.ena=enareg[0]&p2[7];
pci_cbe.d[]=p0[];
pci_cbe.clk=!WRITE0;
pci_address0.ena=enareg[1]&p2[7]l
pci_address0.d[]=P0[];

pci_datas0.ena=enareg[9]&P2[7];
pci_datas0.d[]=P0[];
pci_datas0.clk=!WRITE0;
pci_data0.gate=!TRDY0;
pci_data0.data[]=AD[7..0];
pci_data1.gate=!TRDY0;
pci_data1.data[]=AD[15..8];
pci_data2.gate=!TRDY0;
pci_data2.data[]=AD[23..16];
pci_data3.gate=!TRDY0;
pci_data3.data[]=AD[31..24];
pci_request[3..0].gate=!TRDY0;
pci_request7.gate=!TRDY0;
pci_request7.aclr=P2[7]&!WRITE0;
pci_request[3..0].data=CBE[];
pci_request[4].data=IRDY0;
pci_request[5].data=FRAME0;
pci_request[6].data=Vcc;
pci_request7.data=Vcc;
eread=P2[7]&!READ0 & WRITE0;
my_P0_data0[].in=pci_data0.q[];
my_P0_data0[].oe=enareg[5]&eread;
my_P0_data1[].in=pci_data1.q[];
my_P0_data1[].oe=enareg[6]&eread;
my_P0_data2[].in=pci_data2.q[];
my_P0_data2[].oe=enareg[7]&eread;
my_P0_data3[].in=pci_data3.q[];
my_P0_data3[].oe=enareg[8]&eread;
my_P0_request[6..0].in=pci_request[6..0].q;
my_P0_request[7].in=pci_request7.q;
my_P0_request[].oe=enareg[13]&eread;
out_P0[]=my_P0_data0[];
out_P0[]=my_P0_data1[];
out_P0[]=my_P0_data2[];
out_P0[]=my_P0_data3[];
out_P0[]=my_P0_request[];
P0[]=out_P0[];
enclr=enareg[0]&P2[7]&!WRITE0;
mycounter.clock=CLK;
mycounter.cnt_en=!IRDY0;
mycounter.aclr=!FRAME0;
mycounter.sset=!TRDY0;
ss.clk=!CLK;
ss.reset=enclr;
ss.ena=Vcc;
CASE ss IS
WHEN s0 => ss="s1";
WHEN s1 => ss="s2";
WHEN s2 => IF mycounter.cout THEN ss =s3;ELSE ss="s2";
END IF;
WHENf s3 => ss="s3";
END CASE;
my_AD_address[7..0].in=in=pci_[NextPage]本文相關(guān)DataSheet:MAX7000    EPM7128   
address0;
my_AD_address[31..8].in=GND;
my_AD_address[31..0].oe=!FRAME0;
my_CBE_c[].in=PCI_cbe.d[3..0];
my_CBE_c[].oe=!FRAME0;
my_AD_data[31..0].in=pci_datas0.q[8..1];
my_AD_data[31..0].oe=pci_cbe_[0]&FRAME0;
my_CBE_be[].in=pci_cbe.d[7..4];
my_CBE_be[].oe=FRAME0;
out_AD[]=my_AD_address[];
out_AD[]=my_AD_data[];
AD[]=out_AD[];
out_CBE[]=my_CBE_c[];
out_CBE[]=my_CBE_be[];
CBE[]=out_CBE[];
END;

2.2 單片機PCI讀寫C語言程序設(shè)計
    &nb
sp;  在CPLD在幫助下,單片機讀寫PCI設(shè)備就變得相當簡單。首先,將pci_cbe等寄存器都聲明為外部存儲器變量,并根據(jù)CPLD的設(shè)計指定地址。然后,傳遞適當?shù)膮?shù)給以下兩個讀寫子函數(shù),即可完成對PCI設(shè)備配置空間、I/O空間、存儲器空間的讀寫操作。從PCI設(shè)備的返回數(shù)據(jù)存放在全局變量savedata中。

實際上在寫PCI設(shè)備時,也可以從pci_data中得到返回數(shù)據(jù)。這個數(shù)據(jù)必須等于往PCI設(shè)備寫的數(shù)據(jù),原因參見ABEL HDL設(shè)計部分。利用這一點可以進行差錯檢驗和故障判斷,視具體應(yīng)用而定。
bdate unigned char request;
sbit IRDY0=request^4;
sbit FRAME0=request^5;
sbit VALID="request"^7;
void readpci(unsigned char addr,unsigned char cbe){
pci_address0=addr;
pci_cbe=cbe;
request=pci_request;
while(!IRDY0 & FRAME0)) request="pci"_request;
savedata0=pci_data0;
savedata1=pci_data1;
savedata2=pci_data2;
savedata3=pci_data3;
if(!VALID)printf("Data read is invalid! ");
}
void writepci(uchar addr,uchar value0,uchar cbe){
data uchar temp;
pci_address0=addr;
pci_datas0=value0;
pci_cbe=cbe;
request=pci_request;
while(!(IRDY0 & FRAME0)) request="pci"_request;
if(!VALID)printf("Data write is invalid!");
}[NextPage]本文相關(guān)DataSheet:MAX7000    EPM7128   

地址周期時的總線命令,PCI_cbe[7~4]保存數(shù)據(jù)周期時的字節(jié)使能命令;pci_data0~pci_data3保存從PCI設(shè)備返回的數(shù)據(jù);pci_request是PCI總線讀寫操作狀態(tài)寄存器,用于向單片機返回一些信息。當單片機往pci_cbe寄存器寫入一個字節(jié)的時候,會復(fù)位CPLD中的狀態(tài)機,觸發(fā)CPLD進行PCI總線的讀寫操作;單片機則通過查詢pci_request寄存器得知讀寫操作完成,再從pci_data寄存器讀出PCI設(shè)備返回的數(shù)據(jù)。

CPLD中狀態(tài)機的狀態(tài)轉(zhuǎn)移圖如圖3所示。每一個狀態(tài)對應(yīng)FRAME與IRD信號的一種輸出,而其它輸入輸出信號線可由這兩個信號線和pci_cbe的值及TRDY的狀態(tài)決定。當FRAME為有效時,AD[31~0]由pci_address驅(qū)動,而C/BE[3~0]由pci_cbe低4位驅(qū)動;當IRDY有效時,C/BE[3~0]視總線命令,要么由pci_cbe高4位驅(qū)動,要么設(shè)為高阻態(tài),而AD[31~0]在pci_cbe[0]為“0”時,(PCI讀命令)設(shè)為高阻態(tài),而在pci_cbe[0]為“1”時(PCI讀命令)由pci_datas驅(qū)動。另外一方面,一旦TRDY信號線變?yōu)榈碗娖?,AD[31~0]線上的數(shù)據(jù)被送入pci_data寄存器,而C/BE[3~0]線上的數(shù)據(jù)被送入pci_request寄存器的低4位。

考慮到在不正常情況下,PCI設(shè)備不會對PCI總線作出響應(yīng),即TRDY不會有效,為了不使狀態(tài)機陷入狀態(tài)S2的僵持局面,另外增設(shè)了一個移位計數(shù)器mycounter。當IRD信號有效時,計數(shù)器開始計數(shù)。計數(shù)溢出之后,不論PCI總線操作是否完成,狀態(tài)機都會從狀態(tài)S2轉(zhuǎn)移到狀態(tài)S3,即結(jié)束PCI總線操作。當TRDY有效時,會立即置位mycounter.cout。

PCI總線操作是否正確完成,可查詢pci_request的最高位是否為“1”,而IRDY與FRAME的值可分別查詢pci_request的第4位和第5位。這兩位反映了PCI總線操作所處的狀態(tài),兩位都為“1”時可以認為PCI總線操作已經(jīng)完成。在實踐中,如果單片機的速度不是足夠快的話,可以認為PCI總線操作總是即時完成的。這幾位的實現(xiàn)可參考源程序。

2 PCI設(shè)計接口實現(xiàn)

2.1 CPLD ABEL HDL程序設(shè)計

我們針對8位單片機控制PCI以太網(wǎng)卡進行了程序設(shè)計,CPLD器件選用ALTERA的MAX7000系列。針對以太網(wǎng)卡的特點在邏輯上進行了再次簡化,最張程序?qū)⑦m配進EPM7128芯片中,并在實踐中檢驗通過。

以太網(wǎng)卡僅支持對配置空間和I/O空間的讀寫操作,而且這兩個空間的地址都可以設(shè)置在0xFF以內(nèi),所以可以只用一個pci_address0寄存器,其它地址都直接設(shè)為“0”;如果再限制,每次只往網(wǎng)卡寫入一個字節(jié)數(shù)據(jù),則可以只用一個pci_datas0寄存器,其它數(shù)值在具體操作時設(shè)成與pci_datas0寄存器的一樣即可。

以下是ABEL HDL主要源碼。其中16dmux是4~16位譯碼器,用于地址譯碼,選通CPLD內(nèi)的寄存器;8dffe是8位的DFFE;abelcounter是8位移位計數(shù)器;mylatch8與mylatch1分別為8位與1位鎖存器,而mylatchc是帶清零1位鎖存器;其它以“my”開始的變量都是三態(tài)緩沖器,以“out”開始的變量是三態(tài)節(jié)點,以“e”開始的變量是普通節(jié)點。這此在程序中不再聲明。
SUBDESIGN abelpci

P2[7..3] : INPUT;
READ0 : INPUT
WRITE0 : INPUT;
P0[7..0] : BIDIR;
CLK : INPUT;
TRDY0 : INPUT;
AD[31..] : BIDIR;
CBE[3..0] : BIDIR;
IRDY0 : OUTPUT;
FRAME0 : OUTPUT;
)
VARIABLE
decoder : 16dmux;
mycounter : abelcounter;
pci_c
 

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

8位單片機在嵌入式設(shè)計領(lǐng)域已經(jīng)成為半個多世紀以來的主流選擇。盡管嵌入式系統(tǒng)市場日益復(fù)雜,8位單片機依然不斷發(fā)展,積極應(yīng)對新的挑戰(zhàn)和系統(tǒng)需求。如今,Microchip推出的8位PIC?和AVR?單片機系列,配備了先進的獨立...

關(guān)鍵字: 單片機 嵌入式 CPU

在嵌入式系統(tǒng)開發(fā)中,程序燒錄是連接軟件設(shè)計與硬件實現(xiàn)的關(guān)鍵環(huán)節(jié)。當前主流的單片機燒錄技術(shù)已形成ICP(在電路編程)、ISP(在系統(tǒng)編程)、IAP(在應(yīng)用編程)三大技術(shù)體系,分別對應(yīng)開發(fā)調(diào)試、量產(chǎn)燒錄、遠程升級等不同場景。...

關(guān)鍵字: 單片機 ISP ICP IAP 嵌入式系統(tǒng)開發(fā)

在嵌入式系統(tǒng)開發(fā)中,看門狗(Watchdog Timer, WDT)是保障系統(tǒng)可靠性的核心組件,其初始化時機的選擇直接影響系統(tǒng)抗干擾能力和穩(wěn)定性。本文從硬件架構(gòu)、軟件流程、安全規(guī)范三個維度,系統(tǒng)分析看門狗初始化的最佳實踐...

關(guān)鍵字: 單片機 看門狗 嵌入式系統(tǒng)

本文中,小編將對單片機予以介紹,如果你想對它的詳細情況有所認識,或者想要增進對它的了解程度,不妨請看以下內(nèi)容哦。

關(guān)鍵字: 單片機 開發(fā)板 Keil

隨著單片機系統(tǒng)越來越廣泛地應(yīng)用于消費類電子、醫(yī)療、工業(yè)自動化、智能化儀器儀表、航空航天等各領(lǐng)域,單片機系統(tǒng)面臨著電磁干擾(EMI)日益嚴重的威脅。電磁兼容性(EMC)包含系統(tǒng)的發(fā)射和敏感度兩方面的問題。

關(guān)鍵字: 單片機 電磁兼容

以下內(nèi)容中,小編將對單片機的相關(guān)內(nèi)容進行著重介紹和闡述,希望本文能幫您增進對單片機的了解,和小編一起來看看吧。

關(guān)鍵字: 單片機 復(fù)位電路

在這篇文章中,小編將為大家?guī)韱纹瑱C的相關(guān)報道。如果你對本文即將要講解的內(nèi)容存在一定興趣,不妨繼續(xù)往下閱讀哦。

關(guān)鍵字: 單片機 異常復(fù)位

今天,小編將在這篇文章中為大家?guī)韱纹瑱C的有關(guān)報道,通過閱讀這篇文章,大家可以對它具備清晰的認識,主要內(nèi)容如下。

關(guān)鍵字: 單片機 仿真器

單片機將是下述內(nèi)容的主要介紹對象,通過這篇文章,小編希望大家可以對它的相關(guān)情況以及信息有所認識和了解,詳細內(nèi)容如下。

關(guān)鍵字: 單片機 中斷 boot

一直以來,單片機都是大家的關(guān)注焦點之一。因此針對大家的興趣點所在,小編將為大家?guī)韱纹瑱C的相關(guān)介紹,詳細內(nèi)容請看下文。

關(guān)鍵字: 單片機 數(shù)字信號 模擬信號
關(guān)閉