www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當前位置:首頁 > EDA > 電子設計自動化
[導讀]摘要:針對現(xiàn)有小型無人機導航系統(tǒng)的解算速度慢、多處理器核心臃腫可靠性差的缺點,實現(xiàn)了一種僅使用單一FPGA作為數(shù)據(jù)處理核心的小型高速導航解算系統(tǒng)。該系統(tǒng)對飛機運動方程組和導航方程組進行并行化分解,對相互獨

摘要:針對現(xiàn)有小型無人機導航系統(tǒng)的解算速度慢、多處理器核心臃腫可靠性差的缺點,實現(xiàn)了一種僅使用單一FPGA作為數(shù)據(jù)處理核心的小型高速導航解算系統(tǒng)。該系統(tǒng)對飛機運動方程組和導航方程組進行并行化分解,對相互獨立的中間變量進行并行計算,使得單個運算周期能夠同時進行6次浮點運算,在不盲目增加硬件消耗的條件下有效提高了解算速度。仿真和實驗結果表明系統(tǒng)能夠高效地進行導航信息解算,在小型無人機的導航控制領域有重要的工程應用價值。

導航解算是小型無人機導航控制的基礎,小型無人機機動性強,為了完成自主導航任務,必須快速獲得姿態(tài)和位置信息,如果導航信息無法得到高速解算,導航控制系統(tǒng)會因為不能及時得到載體正確位置信息而發(fā)出錯誤指令,會對運載體以及人員造成極大危險。平臺式慣導系統(tǒng)雖然精度高、實時性好,但是龐大的體積和昂貴的造價不適用于小型無人機的發(fā)展,GPS等衛(wèi)星導航設備雖然價格低廉、體積小巧,但是其衛(wèi)星信號會受到建筑物和天氣等因素的干擾。目前國內(nèi)外應用于無人機上的低成本小型化的導航解算系統(tǒng)研究方面大多使用基于DSP、ARM為主處理器的嵌入式系統(tǒng),或者另外添加一顆協(xié)處理器幫助進行傳感器數(shù)據(jù)的采集,這樣的系統(tǒng)要么解算速度慢,通信效率低,要么系統(tǒng)臃腫,可靠性差?,F(xiàn)場可編程門陣列(FPGA)直接使用硬件描述語言進行編程,與ARM和DSP器件相比,可以獲得更有效率的數(shù)據(jù)處理速度,可以兼容各種格式和長度的數(shù)據(jù),同時集成了常用IP核,使之可以靈活的用來進行系統(tǒng)設計。在單片F(xiàn)PGA芯片上實現(xiàn)導航信息的高速解算,將會有廣闊的發(fā)展空間。

針對現(xiàn)有小型無人機導航解算系統(tǒng)解算速度慢、多處理器臃腫可靠性差的缺點,文中設計了一種在單片F(xiàn)PGA芯片上實現(xiàn)數(shù)據(jù)傳輸、姿態(tài)解算和位置解算等功能的導航解算系統(tǒng),節(jié)省了小型無人機寶貴的空間和成本,提出了一種導航信息的FPGA并行解算方法,充分發(fā)揮FPGA的并行數(shù)據(jù)處理能力提高解算速度,一次導航解算過程只需20微秒。

1 系統(tǒng)結構

系統(tǒng)結構如圖1所示,由單片F(xiàn)PGA芯片作為數(shù)據(jù)處理的核心,型號為EP2C35F484C6N,其與一個型號為NAV440的慣性測量單元(IMU)進行串口通信接收所需的三軸加速度、三軸角加速度等信息,F(xiàn)PGA依次由數(shù)據(jù)接收模塊、數(shù)據(jù)預處理模塊、姿態(tài)解算模塊、位置解算模塊對數(shù)據(jù)進行處理,最后將數(shù)據(jù)封包發(fā)出,上位機保存數(shù)據(jù)。

2 導航解算模塊的FPGA設計

2.1 數(shù)據(jù)的接收和預處理

慣性測量單元發(fā)出的數(shù)據(jù)是有符號位整型的十六位數(shù)據(jù)包,分頻一個十六倍于波特率的采樣時鐘對串口數(shù)據(jù)進行采樣。由于50 MHz的系統(tǒng)時鐘不能分頻得到正好十六倍于57 600 Hz,需要實時進行相位差的同步。定義一個case結構的語句,第七個采樣時鐘周期對串口數(shù)據(jù)進行采樣,同時定義一個寄存器,檢測到串口數(shù)據(jù)的上升沿或者下降沿時產(chǎn)生時鐘同步標志位,這樣就解決了數(shù)據(jù)穩(wěn)態(tài)和時鐘相位同步的問題。接收到的串行數(shù)據(jù)從低到高位按位依次存放到8位緩沖寄存器的第0到第7位,這樣就完成了串行數(shù)據(jù)接收。FPGA的據(jù)接收模塊對兩個8位數(shù)據(jù)拼接后得到的數(shù)據(jù)是16位有符號整型數(shù)據(jù),數(shù)據(jù)預處理模塊對需要其進行單精度浮點型的格式轉換,然后進行單位標定。其中16位有符號整型數(shù)據(jù)向單精度浮點型數(shù)據(jù)格式轉換的步驟如下:

步驟1:判斷整型數(shù)據(jù)的最高位即符號位,記錄符號位并轉換成補碼形式;

步驟2:接著將上述補碼形式左移位,直到第14位為1,并記錄下左移位數(shù),階碼即等于14減去左移的位數(shù);

步驟3:將上述移位后的16位數(shù)據(jù)再左移2位即浮點數(shù)的尾數(shù)的整數(shù)部分,直接賦值給浮點數(shù)的第7到22位,由于整型數(shù)據(jù)小數(shù)點右邊全是零,所以浮點數(shù)的第0到6位也是0,浮點數(shù)的第23到30位即階碼加上127的偏移量,第31位為符號位與整型數(shù)據(jù)的最高位相同。

2.2 歐拉法姿態(tài)并行解算模塊的FPGA設計

FPGA芯片擁有良好的并行運算能力,不同程序塊可以相對獨立的進行運算,只要對算式進行合理的并行化分解,就能夠提高運算速度。并行計算的程序塊越多,數(shù)據(jù)處理的速度越快,消耗的硬件資源也越多。飛機運動方程如式(1)所示。

相互不影響的中間變量可以同時計算,依此對式(Ⅱ)進行并行化分解。分析其計算過程,一次加減法或者乘除法通常是兩個三角函數(shù)值之間的運算,乘法運算較多,除法運算只有一次,而每兩次乘除法運算才進行一次加減法運算?;谏鲜龇治龊陀布Y源消耗的考慮,通過3個乘法運算模塊、1個除法運算模塊、2個加減法運算模塊和2個正余弦函數(shù)運算模塊對姿態(tài)角進行解算。FPGA每一個計算周期最多同時調(diào)用6個運算模塊對數(shù)據(jù)進行并行處理,不同計算周期所計算的算子安排如下所示:

2.3 位置信息并行解算的FPGA設計

通過傳感器獲得的加速度以及上述模塊解算的姿態(tài)角可以解算飛機三軸速度,飛機速度解算方程如式(2)所示。

依據(jù)上述并行計算結構進行硬件描述語言的編程和編譯,導航解算系統(tǒng)所占用的FPCA硬件資源如表1所示。

圖2為導航解算FPGA功能仿真時序圖,以此估算模塊計算所消耗的時間。一次姿態(tài)解算需要230個時鐘周期,一次導航解算需要980個時鐘周期,那么在50 MHz的系統(tǒng)時鐘下,姿態(tài)解算需時4.7微秒,導航解算需時20微秒。導航解算系統(tǒng)功能仿真結果與計算機計算結果進行對比,仿真步長為0.1秒,仿真輸入?yún)?shù)如表2所示,計算結果如表3所示,通過比對可以發(fā)現(xiàn),F(xiàn)PGA的計算結果與MATLAB計算結果沒有偏差,說明導航解算系統(tǒng)能夠正確地進行導航信息的解算。

3 實驗結果與誤差分析

在一輛普通轎車上進行導航實驗,系統(tǒng)的搭建如圖1和圖3所示。系統(tǒng)的核心是一塊承擔數(shù)據(jù)處理任務的FPGA,在芯片外接合適的IMU,IMU的功耗和體積基本決定了導航系統(tǒng)的功耗和體積。所以整個導航系統(tǒng)的結構是簡單和小巧的而且節(jié)能的。

實驗進行了340秒,如圖4和圖5所示,依次是三軸陀螺儀傳感器數(shù)據(jù)和三軸加速度計傳感器數(shù)據(jù)。位置曲線如圖6所示,實線是導航解算系統(tǒng)解算的位置信息,虛線是GPS獲得的實際位置信息。可以發(fā)現(xiàn)導航解算系統(tǒng)良好地跟蹤了實際位置變化趨勢,但是隨著時間的推移,導航解算系統(tǒng)解算出的位置信息與實際位置信息偏差越來越大。

導航解算系統(tǒng)的誤差引入主要因為基于MEMS的慣性傳感器的誤差較大,使用單一傳感器進行姿態(tài)和位置解算會在姿態(tài)計算和速度計算環(huán)節(jié)兩次引入積累誤差。在實際使用中,載體使用的戰(zhàn)術級高精度IMU,在一定的使用時間內(nèi),導航系統(tǒng)不會產(chǎn)生很大的積累誤差。除此之外,發(fā)揮本系統(tǒng)動態(tài)特性好、更新速率快的優(yōu)勢,借助最優(yōu)估計的方法,通過進行多種傳感器的信息融合也可以收斂誤差。

4 結論

針對現(xiàn)有小型無人機導航解算系統(tǒng)解算速度慢、多處理器臃腫可靠性差的缺點,文中提出了一種并行化的導航解算方法,并搭建了一種僅使用單一FPGA芯片為數(shù)據(jù)處理核心的小型高速導航解算系統(tǒng),功能仿真驗證了導航解算的高速性和準確性。車載實驗驗證了系統(tǒng)可以在實際中完成導航信息的解算工作。根據(jù)一次結算消耗時間可知系統(tǒng)理論擁有50 000 Hz的導航解算能力,在實際使用中,輔以足夠精度的高速IMU,系統(tǒng)將會發(fā)揮小型化、高速率和低功耗的優(yōu)勢,在相關的小型無人機導航系統(tǒng)設計領域有重要借鑒意義。

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

中國 上海,2025年9月11日——全球領先的智能傳感和發(fā)射器解決方案供應商艾邁斯歐司朗(SIX:AMS)今日宣布,在第26屆中國國際光電博覽會(CIOE 2025)上發(fā)布了其最新的直接飛行時間(dToF)傳感器TMF8...

關鍵字: 傳感器 無人機 機器人

深圳2025年9月9日 /美通社/ -- 第26屆中國國際光電博覽會(CIOE 2025)將于2025年9月10日至12日在深圳國際會展中心(寶安新館)盛大舉辦。作為全球光電產(chǎn)業(yè)的重要盛會,CIOE將匯聚來自全球超30個...

關鍵字: 激光雷達 CIO 光電 無人機

無人機已廣泛應用于娛樂產(chǎn)業(yè)(如電視節(jié)目/電影制作)、業(yè)余攝影領域,甚至成為風靡一時的趣味玩具。憑借抵達復雜區(qū)域的能力,無人機的應用正逐步拓展至工業(yè)檢測、物流配送、安防監(jiān)控等專業(yè)場景。但你是否知道,支撐無人機運行的核心組件...

關鍵字: 無人機 AI視覺系統(tǒng) 圖像傳感器

全新解決方案兼顧卓越的熱效率和優(yōu)異的功率損耗,適用于多端口USB-PD充電器、便攜式電源站等多種應用

關鍵字: USB-PD充電器 機器人 無人機

在數(shù)字化浪潮席卷全球的今天,F(xiàn)PGA技術正成為驅(qū)動創(chuàng)新的核心引擎。2025年8月21日,深圳將迎來一場聚焦FPGA技術與產(chǎn)業(yè)應用的盛會——2025安路科技FPGA技術沙龍。本次沙龍以“定制未來 共建生態(tài)”為主題,匯聚行業(yè)...

關鍵字: FPGA 核心板 開發(fā)板

在現(xiàn)代電子系統(tǒng)中,現(xiàn)場可編程門陣列(FPGA)憑借其開發(fā)時間短、成本效益高以及靈活的現(xiàn)場重配置與升級等諸多優(yōu)點,被廣泛應用于各種產(chǎn)品領域。從通信設備到工業(yè)控制,從汽車電子到航空航天,F(xiàn)PGA 的身影無處不在。為了充分發(fā)揮...

關鍵字: 可編程門陣列 FPGA 數(shù)字電源

在當今數(shù)字化與智能化飛速發(fā)展的時代,數(shù)據(jù)量呈爆發(fā)式增長,對數(shù)據(jù)處理的實時性、高效性以及安全性提出了前所未有的挑戰(zhàn)。AI 邊緣計算網(wǎng)關,作為融合了人工智能(AI)與邊緣計算技術的創(chuàng)新產(chǎn)物,正逐漸嶄露頭角,成為推動各行業(yè)邁向...

關鍵字: 數(shù)據(jù)處理 邊緣計算 人工智能

2025年8月4日 – 提供超豐富半導體和電子元器件?的業(yè)界知名新品引入 (NPI) 代理商貿(mào)澤電子 (Mouser Electronics) 即日起開售Altera?的Agilex? 3 FPGA C系列開發(fā)套件。此開...

關鍵字: FPGA 邊緣計算 嵌入式應用

上海2025年7月28日 /美通社/ -- 為期四天的2025國際低空經(jīng)濟博覽會于7月26日圓滿落幕。作為聚焦低空經(jīng)濟全產(chǎn)業(yè)鏈為核心的國際性展會,本屆博覽會以"啟航低空經(jīng)濟,賦能千行百業(yè)"為主題,吸引...

關鍵字: EV 無人機 飛機 飛行器

內(nèi)窺鏡泛指經(jīng)自然腔道或人工孔道進入體內(nèi),并對體內(nèi)器官或結構進行直接觀察和對疾病進行診斷的醫(yī)療設備,一般由光學鏡頭、冷光源、光導纖維、圖像傳感器以及機械裝置等構成。文章介紹了一款基于兩片圖像傳感器和FPGA組成的微型3D內(nèi)...

關鍵字: 微創(chuàng) 3D內(nèi)窺鏡 OV6946 FPGA
關閉