www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當前位置:首頁 > 工業(yè)控制 > 電子設計自動化

信號完整性問題是高速PCB設計者必需面對的問題。阻抗匹配、合理端接、正確拓撲結構解決信號完整性問題的關鍵。傳輸線上信號的傳輸速度是有限的,信號線的布線長度產生的信號傳輸延時會對信號的時序關系產生影響,所以PCB上的高速信號的長度以及延時要仔細計算和分析。

運用信號完整性分析工具進行布線前后的仿真對于保證信號完整性和縮短設計周期是非常必要的。在PCB板子已焊接加工完畢后才發(fā)現(xiàn)信號質量問題和時序問題,是經費和產品研制時間的浪費。

1.1板上高速信號分析

我們設計的是基于PowerPCB的主板,主要由處理器MPC755、北橋MPC107、北橋PowerSpanII、VME橋CA91C142B等一些電路組成,上面的高速信號如圖2-1所示。

板上高速信號主要包括:時鐘信號、60X總線信號、L2Cache接口信號、Memory接口信號、PCI總線0信號、PCI總線1信號、VME總線信號。這些信號的布線需要特別注意。

由于高速信號較多,布線前后對信號進行了仿真分析,仿真工具采用Mentor公司的HyperLynx7.1仿真軟件,它可以進行布線前仿真和布線后仿真。

1.2印制板信號完整性整體設計

1.2.1層疊結構

在傳輸線(PCB走線)中的磁力線是沿逆時針方向的,如果把RF返回路徑與對應的源路徑平行并且與其靠近,在返回路徑中的磁力線(延逆時針方向的場),相對于源路徑中的磁力線(順時針方向的場),將是相反的方向。這樣順時針場和逆時針場可以抵消。如果源和返回路徑之間的磁力線被消除或減小,那么除了在走線附近極小的面積,輻射或傳導的RF電流就不存在了。多層印制板可以實現(xiàn)通量最小化,這是采用多層電路板的原因之一。信號層靠近參考層,信號返回路徑直接位于信號線的下方,回路面積最小,通量抵消最明顯。

為了實現(xiàn)通量最小化,必須實現(xiàn)PCB板上信號層和參考層交錯排列,這樣,每個信號層都有相鄰的參考層??紤]到本板上的芯片數(shù)多,特別密集,而且電氣網絡也特別多,所以采用多少層的PCB要仔細安排,多了或少了都不好:如果層數(shù)太少,布線將變得很困難,甚至可能完不成布線。當然在布線過程中如果感覺布線空間不夠,可以再增加層數(shù),但加層后要對已完成的布線做許多調整,重新安排一些走線規(guī)則,這將增加許多工作量。

如果層數(shù)太多,加工成本增加,板子厚度可能失控。目前4層板的板費為0.5元/平方厘米左右,而六層板的板費為1.5元/平方厘米左右。印制板層數(shù)每增加兩層,板費要增加好幾倍。按VME64總線標準,印制板厚度應為1.6±0.2mm,即63±8mil,目前國內的印制板設備,采用的板芯一般最薄的為5mil厚,銅層厚度有0.5盎司、1.0盎司、1.5盎司等規(guī)格,如果層數(shù)太多,印制板厚度無法滿足要求。

1.2.2阻抗考慮

PCI2.2規(guī)范要求PCB上的信號線在未焊接器件之前的特征阻抗為60Ω-

100Ω,VME64規(guī)范要求PCB上的信號線在未焊接器件之前的特征阻抗為50Ω-60Ω。按目前的集成電路生產工藝,50Ω-100Ω的阻抗是比較合適的,不同的信號有一些差別?,F(xiàn)在比較好的PCB加工設備,能加工線寬4mil、間距4mil的印制線。根據阻抗要求和目前PCB加工設備現(xiàn)狀,信號線基本采用5mil線寬和5mil間距,對有些信號線的阻抗,如果層間距和印制板基材介電常數(shù)調整無法滿足要求,可以采用4mil的信號線布線。

1.2.3傳輸速度

PCI2.2規(guī)范要求PCB上的信號線在無負載時的傳輸速度為150ps/inch-190ps/inch。PCB上的信號線在無負載情況下的傳輸速度只與介質材料的介電常數(shù)相關,所以選取介質材料的介電常數(shù)時除了考慮它對印制線特征阻抗的影響外,還應考慮它對印制線傳輸速度的影響。

1.2.4整板層疊及阻抗設計

綜合以上三點,最后采用12層印制板,其中8個信號層(包括元件層),兩個地層,一個3.3V電源層,一個混合電源層(包括5V、2V、兩個2.5V)。用HyperLynx軟件優(yōu)化出來的PCB層疊結構如圖2-2所示,總厚度為65.7mil,即1.67mm,滿足VME64規(guī)范要求。

1.3時鐘信號阻抗匹配

時鐘信號是各設備工作的基礎,所以時鐘信號的質量尤為重要,在PCB設計時要慎重對待。

板上時鐘信號很多,主要高速時鐘信號如圖2-3所示。

時鐘芯片的輸出信號阻抗一般都比較小。芯片MPC950的輸出阻抗為7ohm,芯片AV9155的輸出阻抗為10ohm。本板上的時鐘信號都是點對點連接,所以采用串行端接進行阻抗匹配電路設計。

具體串連電阻的大小由HyperLynx仿真后決定。

1.4L2Cache總線和60x總線信號完整性分析

本板的L2Cache總線工作頻率200Mhz,60x總線工作頻率100MHz,是板上工作頻率最高的部分。依據MPC755、MPC107、PowerSpan的芯片手冊,阻抗在50ohm~70ohm之內比較合適,按前面層疊結構的設計,5mil的信號線寬是可以保證阻抗要求的。

因為板上這兩個總線的負載最多為2個負載,且這幾個芯片之間的距離很近,相關的PCB走線很短,所以信號時序關系一般能夠滿足要求(盡管其工作頻率很高)。下面給出L2Cache總線上典型時鐘線、地址線以及數(shù)據線的PCB走線圖以及在HyperLynx仿真軟件的BoardSim工具下的仿真波形。MPC755、MPC107、PowerSpan和GVT71128芯片的IBIS模型均來自于芯片廠商(Motorola、TUNDRA和GALVENTECH)。

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內容真實性等。需要轉載請聯(lián)系該專欄作者,如若文章內容侵犯您的權益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

傳感器是能感受規(guī)定的被測量并按照一定的規(guī)律轉換成可用輸出信號的器件或裝置。傳感器有許多種,在先進測量技術這門課中提到了許多傳感器,在現(xiàn)代工業(yè)生產尤其是自動化生產過程中,要用各種傳感器來監(jiān)視和控制生產過程中的各個參數(shù),使設...

關鍵字: 傳感器 信號

高功率脈沖發(fā)射機作為一種能夠產生高能量、短脈沖信號的設備,在眾多領域發(fā)揮著關鍵作用。在雷達系統(tǒng)中,它為目標探測提供強大的發(fā)射功率,使得雷達能夠在遠距離精確識別和跟蹤目標;在通信領域,可用于實現(xiàn)高速率、大容量的數(shù)據傳輸;在...

關鍵字: 高功率 脈沖發(fā)射機 信號

在當今數(shù)字化、智能化的時代,電子設備無處不在,從智能手機、智能家居到工業(yè)控制系統(tǒng),它們在提升生活品質與生產效率的同時,也面臨著高頻干擾與兼容性問題的挑戰(zhàn)。高頻干擾會導致設備信號傳輸不穩(wěn)定、數(shù)據丟失,甚至系統(tǒng)崩潰;兼容性問...

關鍵字: 高頻干擾 兼容性 信號

在當今電子技術飛速發(fā)展的時代,隨著電子產品不斷向小型化、高性能化邁進,印刷電路板(PCB)的設計變得愈發(fā)復雜和精密。過孔,作為 PCB 中連接不同層線路的關鍵元件,其對信號完整性的影響已成為電路設計中不可忽視的重要因素。...

關鍵字: 印刷電路板 電路設計 信號

在當今高速發(fā)展的電子系統(tǒng)領域,信號完整性已然成為確保系統(tǒng)性能與可靠性的關鍵要素。從驅動到連接器的信號傳輸路徑宛如一條信息高速公路,而接收端則如同這條公路的終點收費站,其設置的合理性直接關乎信號能否準確無誤地抵達目的地。若...

關鍵字: 信號 連接器 驅動

在電子系統(tǒng)設計與信號傳輸過程中,工程師們常常會遇到信號波形不理想的情況。其中,信號波形下降沿出現(xiàn)上沖現(xiàn)象是較為常見的問題之一。這種異常不僅會干擾信號的正常傳輸,影響系統(tǒng)的性能和穩(wěn)定性,甚至可能導致系統(tǒng)出現(xiàn)誤判等嚴重后果。...

關鍵字: 信號 干擾 電子系統(tǒng)

在印刷電路板(PCB)設計中,過孔作為連接不同層線路的重要元件,其對信號完整性的影響不容忽視。隨著電子技術的飛速發(fā)展,電路的工作頻率不斷提高,信號上升沿時間越來越短,這使得過孔對信號的影響愈發(fā)顯著。在許多情況下,我們必須...

關鍵字: 印刷電路板 過孔 信號

在電子電路設計中,24 位 RGB TTL 信號的布線是一個關鍵環(huán)節(jié),其布線質量直接影響到系統(tǒng)的性能和穩(wěn)定性。特別是在涉及顯示設備等對信號完整性要求較高的應用場景中,遵循正確的布線要求至關重要。下面將從多個方面詳細闡述...

關鍵字: 信號 布線 顯示設備

在現(xiàn)代高速電子系統(tǒng)中,信號完整性(Signal Integrity, SI)已成為確保系統(tǒng)可靠運行的關鍵因素。信號完整性是指信號在傳輸路徑上保持其原始特性的能力,當信號從驅動端出發(fā),經過傳輸線到達連接器,最終被接收端接收...

關鍵字: 信號 傳輸路徑 質量

在當今電子設備高度集成化與智能化的時代,電磁干擾(EMI)已成為影響設備性能與可靠性的關鍵因素。隨著電子設備數(shù)量的激增以及工作頻率的不斷提升,不同設備間的電磁信號相互干擾問題日益凸顯,這不僅可能導致設備功能異常,還可能影...

關鍵字: 電磁干擾 信號 擴頻
關閉