www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當前位置:首頁 > 單片機 > 單片機
[導讀]電路功能與優(yōu)勢本電路顯示如何在精密熱電偶溫度監(jiān)控應用中使用精密模擬微控制器ADuCM360/ADuCM361。ADuCM360/ADuCM361集成雙通道24位-型模數(shù)轉(zhuǎn)換器(ADC)、雙通道可編程電流源、12位數(shù)模轉(zhuǎn)換器(DAC)、1.2 V內(nèi)部基準電

電路功能與優(yōu)勢

本電路顯示如何在精密熱電偶溫度監(jiān)控應用中使用精密模擬微控制器ADuCM360/ADuCM361。ADuCM360/ADuCM361集成雙通道24位-型模數(shù)轉(zhuǎn)換器(ADC)、雙通道可編程電流源、12位數(shù)模轉(zhuǎn)換器(DAC)、1.2 V內(nèi)部基準電壓源、ARM Cortex-M3內(nèi)核、126 kB閃存、8 kB SRAM以及各種數(shù)字外設,例如UART、定時器、SPI和I2C接口等。

在本電路中,ADuCM360/ADuCM361連接到一個熱電偶和一個100 鉑電阻溫度檢測器(RTD)。RTD用于執(zhí)行冷結(jié)補償。

在源代碼中,ADC采樣速率選擇4 Hz。當ADC輸入可編程增益放大器(PGA)的增益配置為32時,ADuCM360/ADuCM361的無噪聲代碼分辨率大于18位。

圖1. ADuCM360/ADuCM361用作溫度監(jiān)控控制器與熱電偶接口(原理示意圖,未顯示所有連接)

電路描述

本應用中用到ADuCM360/ADuCM361的下列特性:

- 在軟件中,為熱電偶和RTD配置了32倍PGA增益的24位∑-△型ADC。ADC1在熱電偶信號采樣與RTD電壓信號采樣之間連續(xù)切換。

- 可編程激勵電流源,用來驅(qū)動受控電流流經(jīng)RTD。雙通道電流源可在0A至2mA范圍內(nèi)配置。本例使用200A設置,以便將RTD自熱效應引起的誤差降至最小。

- ADuCM360/ADuCM361中的ADC內(nèi)置1.2V基準電壓源。它的內(nèi)部基準電壓源精度高,適合測量熱電偶電壓。

- ADuCM360/ADuCM361中的ADC內(nèi)置外部電壓基準電壓源。它可測量RTD電阻;采用比率式設置,將一個外部基準電阻(RREF)連接在外部VREF+和VREF引腳上。

- 偏置電壓發(fā)生器(VBIAS)。VBIAS用于將熱電偶共模電壓設置為AVDD/2。

- ARMCortex-M3內(nèi)核。功能強大的32位ARM內(nèi)核集成了126kB閃存和8kBSRAM存儲器,用來運行用戶代碼,可配置并控制ADC,通過RTD處理ADC轉(zhuǎn)換,以及控制UART/USB接口的通信。

- UART用作與PC主機的通信接口。

- 兩個外部開關(guān)用來強制該器件進入閃存引導模式。使SD處于低電平,同時切換RESET按鈕,ADuCM360/ADuCM361便進入引導模式,而不是正常的用戶模式。在引導模式下,通過UART接口可以對內(nèi)部閃存重新編程。

熱電偶和RTD產(chǎn)生的信號均非常小,因此需要使用PGA來放大這些信號。

本應用使用的熱電偶為T(銅-康銅)型,其溫度范圍為−200°C至+350°C。靈敏度約為40V/°C,這意味著ADC在雙極性模式和32倍PGA增益設置下可以覆蓋熱電偶的整個溫度范圍。

RTD用于執(zhí)行冷結(jié)補償。本電路使用鉑100ΩRTD,型號為Enercorp PCS 1.1503.1。它采用0805表貼封裝。溫度變化率為0.385Ω/°C。

注意,基準電阻RREF應為精密5.6kΩ (±0.1%)電阻。

ADuCM360/ADuCM361的USB接口通過FT232R UART轉(zhuǎn)USB收發(fā)器實現(xiàn),它將USB信號直接轉(zhuǎn)換為UART。

除圖1所示的去耦外,USB電纜本身還須采用鐵氧體磁珠來增強EMI/RFI保護功能。本電路所用鐵氧體磁珠為Taiyo Yuden #BK2125HS102-T,它在100 MHz時的阻抗為1000Ω。

本電路必須構(gòu)建在具有較大面積接地層的多層印刷電路板(PCB)上。為實現(xiàn)最佳性能,應采用適當?shù)牟季帧⒔拥睾腿ヱ罴夹g(shù)。

評估該電路所用的PCB如圖2所示。

圖2. 本電路所用的EVAL-ADuCM360TCZ板

代碼說明

用于測試本電路的源代碼可從ADuCM360產(chǎn)品頁面下載(zip壓縮文件)。

UART配置為波特率9600、8數(shù)據(jù)位、無極性、無流量控制。如果本電路直接與PC相連,則可以使用“超級終端” (HyperTerminal)等通信端口查看程序來查看該程序發(fā)送給UART的結(jié)果,如圖3所示。

圖3.“超級終端”通信端口查看程序的輸出

測量熱電偶和RTD的溫度,以獲得溫度讀數(shù)。通過查找表,將RTD溫度轉(zhuǎn)換為它的等效熱電偶電壓(可查看ISE公司的ITS-90 T型熱電偶表)。這兩個電壓相加以得出熱電偶的絕對溫度值。

首先,V1是熱電偶兩條線之間測得的電壓。通過查找表,測量RTD電壓并轉(zhuǎn)換為溫度值;然后,該溫度值再轉(zhuǎn)換為它的等效熱電偶電壓(V2)。隨后,V1和V2相加得出總熱電偶電壓值,此數(shù)值經(jīng)轉(zhuǎn)換后作為最終的溫度測量值。

圖4. 使用簡單線性逼近法時的誤差

最初,這一轉(zhuǎn)換是基于一個簡單的線性假設:熱電偶的溫度為40V/°C。從圖4可以看出,只有針對0°C左右的小范圍溫度,如此轉(zhuǎn)換所產(chǎn)生的誤差才是可以接受的。計算熱電偶溫度的更好方法是對正溫度使用6階多項式,對負溫度使用7階多項式。這需要進行數(shù)學運算,導致計算時間和碼字大小增加。適當?shù)恼壑允轻槍潭〝?shù)量的電壓計算相應的溫度,然后將這些溫度存儲在一個數(shù)組中,其間的值利用相鄰點的線性插值法計算。從圖5可以看出,使用這種方法時誤差顯著降低。圖5表示使用理想熱電偶電壓的算法誤差。

圖5. 使用分段線性逼近法時的誤差

圖6表示在ADuCM360上采用ADC1測量全熱電偶工作范圍內(nèi)的52個熱電偶電壓,所產(chǎn)生的誤差。整體最大的誤差為<1°C。

圖6. 使用分段線性逼近法時的誤差(采用ADuCM360/ADuCM361測量的52個校準點)

像熱電偶一樣,RTD溫度可使用查找表的方法計算與實現(xiàn)。注意,描述RTD溫度與電阻關(guān)系的多項式與描述熱電偶的多項式不同。

常見變化

ADP1720 可以代替ADP120調(diào)節(jié)器,前者具有同樣的工作溫度范圍(−40°C至+125°C),功耗更低(典型值為35A,后者為70A)且具有更低的最大輸入電壓。請注意,ADuCM360/ADuCM361可以通過標準串行線接口編程或調(diào)試。

對于標準UART至RS-232接口,可以用ADM3202等器件代替FT232R收發(fā)器,前者需采用3 V電源供電。對于更寬的溫度范圍,可以使用其它熱電偶,例如J型熱電偶。為使冷結(jié)補償誤差最小,可以讓一個熱敏電阻與實際的冷結(jié)接觸,而不是把它放在PCB上。

針對冷結(jié)溫度測量,可以用一個外部數(shù)字溫度傳感器來代替RTD和外部基準電阻。例如,ADT7410可以通過I2C接口連接到ADuCM360/ADuCM361。

有關(guān)冷結(jié)補償?shù)母嘈畔ⅲ垍㈤咥DI公司的《信號調(diào)理》第7章“溫度傳感器”。

如果USB連接器與本電路之間需要隔離,則應增加隔離器件ADuM3160/ADuM4160。

常見變化

ADP1720 可以代替ADP120調(diào)節(jié)器,前者具有同樣的工作溫度范圍(−40°C至+125°C),功耗更低(典型值為35A,后者為70A)且具有更低的最大輸入電壓。請注意,ADuCM360/ADuCM361可以通過標準串行線接口編程或調(diào)試。

對于標準UART至RS-232接口,可以用ADM3202等器件代替FT232R收發(fā)器,前者需采用3 V電源供電。對于更寬的溫度范圍,可以使用其它熱電偶,例如J型熱電偶。為使冷結(jié)補償誤差最小,可以讓一個熱敏電阻與實際的冷結(jié)接觸,而不是把它放在PCB上。

針對冷結(jié)溫度測量,可以用一個外部數(shù)字溫度傳感器來代替RTD和外部基準電阻。例如,ADT7410可以通過I2C接口連接到ADuCM360/ADuCM361。

有關(guān)冷結(jié)補償?shù)母嘈畔?,請參閱ADI公司的《信號調(diào)理》第7章“溫度傳感器”。

如果USB連接器與本電路之間需要隔離,則應增加隔離器件ADuM3160/ADuM4160。

圖7. 用于在熱電偶完整輸出電壓范圍內(nèi)校準和測試電路的設置

RTD測量測試

為評估RTD電路和線性化源代碼,以精確可調(diào)節(jié)的源電阻替代板上的RTD。采用儀器為1433-Z Decade Resistor。RTD值在90Ω至140Ω之間,表示的RTD溫度范圍為−25°C至+114°C。

圖8表示測試設置電路,圖9表示RTD測試的誤差結(jié)果。

圖8. 用于測量RTD誤差的測試設置

圖9. RTD測量誤差,以°C表示(采用分段線性代碼和ADC0測量)

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動電源

在工業(yè)自動化蓬勃發(fā)展的當下,工業(yè)電機作為核心動力設備,其驅(qū)動電源的性能直接關(guān)系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅(qū)動電源設計中至關(guān)重要的兩個環(huán)節(jié),集成化方案的設計成為提升電機驅(qū)動性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機 驅(qū)動電源

LED 驅(qū)動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設備的使用壽命。然而,在實際應用中,LED 驅(qū)動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設計、生...

關(guān)鍵字: 驅(qū)動電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動電源的公式,電感內(nèi)電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設計 驅(qū)動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動汽車的核心技術(shù)之一是電機驅(qū)動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅(qū)動系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動汽車的動力性能和...

關(guān)鍵字: 電動汽車 新能源 驅(qū)動電源

在現(xiàn)代城市建設中,街道及停車場照明作為基礎(chǔ)設施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動電源 LED

LED通用照明設計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現(xiàn)在的LED驅(qū)動電源

關(guān)鍵字: LED 驅(qū)動電源 開關(guān)電源

LED驅(qū)動電源是把電源供應轉(zhuǎn)換為特定的電壓電流以驅(qū)動LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動電源
關(guān)閉