www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當(dāng)前位置:首頁 > 單片機(jī) > 單片機(jī)
[導(dǎo)讀]去年把STM32的DMA試了一下,好像用過了M2M模式,測試時從STM32 自帶的FLASH to RAM,使用的32bit寬度數(shù)據(jù),測試成功,然后又用了DMA給DAC送數(shù)據(jù),產(chǎn)生方波,三角波,正弦波等。用過DMA后就用了FSMC驅(qū)動9325TFT,由于

去年把STM32的DMA試了一下,好像用過了M2M模式,測試時從STM32 自帶的FLASH to RAM,使用的32bit寬度數(shù)據(jù),測試成功,然后又用了DMA給DAC送數(shù)據(jù),產(chǎn)生方波,三角波,正弦波等。

用過DMA后就用了FSMC驅(qū)動9325TFT,由于當(dāng)時不知道液晶上標(biāo)的引腳有錯誤,一直不成功,郁悶好久,最后才知道,參考了一下網(wǎng)上的程序,成功用了CPU 加FSMC驅(qū)動了TFT,不用IO口模擬。

既然TFT驅(qū)動成功了,然后我就很想用FSMC總線驅(qū)動板子上的ISSI 25616 的512Kb外部SRAM,但是經(jīng)過我的很多嘗試,都是失敗的,找了很多原因都不行,一直不能理解,而且很郁悶。這個學(xué)期開學(xué),換了一個板子,一下就成功了,可能以前的硬件有點(diǎn)問題吧,只能這樣說吧。

既然DMA和FSMC都成功了,我原來也就想到既然TFT也是利用FSMC映射到STM32尋址的4G空間,那么按理說也可以用DMA的M2M進(jìn)行數(shù)據(jù)傳輸,我把液晶映射到的地址是0x68000000,但是我試了很久都是不行的,找了好久資料,好像有人說成功,可以的,我就一直郁悶,但是直到今天終于成功了。

這次測試的不是TFT,因?yàn)槲业陌遄由线@時沒有TFT,就用外部SRAM進(jìn)行了測試了。外部SRAM用FSMC總線成功了,想提高速度,節(jié)約CPU時間,讓其處理其他事情。昨晚從四點(diǎn)多一直調(diào)到了十點(diǎn)多,沒有成功,而且把我氣個半死,越來越變態(tài)的問題都發(fā)生了,比如FLASH to RAM 16bit DMA失敗,F(xiàn)LASH的數(shù)組居然存儲到0x00000020,而且完全錯誤,簡直是變態(tài),本來就該0x08000000以上的地址,JLINK錯誤,MDK 自動關(guān)掉,那六個多小時把我快整瘋了。今天決定弄不好不吃飯,仔細(xì)對比由于是我地址宏定義寫錯了,還有一個地方賦值錯了,我一直沒有發(fā)現(xiàn),因?yàn)楹芟瘛?/p>

好了就好,好了就好……

貼上我的部分關(guān)健代碼,但是百度空間不會高亮編程關(guān)鍵字,看起來不是很爽啊

//Today it is the fisrt time when I test DMA+FSMC to drive ISSI 25616 SRAM successfully
//The first time I test DMA M2M success 2010 10 14
//The first time I test FSMC to drive 9325TFT success 2010 11 4
//The first time I test FSMC to drive ISSI25616 SRAM success 2011 2 28
//by ACM不掛科 928765096
//from HDU
//2011 3 16
//Note :we can use this to drive TFT,it can save CPU time to do other things

#include"DMA_FSMC.h"

#define BufferSize 32
#define Bank1_SRAM3_ADDR ((uint32_t)0x68000000)

const uint32_t SRC_Const_Buffer[BufferSize]= {
0x01020304,0x05060708,0x090A0B0C,0x0D0E0F10,
0x11121314,0x15161718,0x191A1B1C,0x1D1E1F20,
0x21222324,0x25262728,0x292A2B2C,0x2D2E2F30,
0x31323334,0x35363738,0x393A3B3C,0x3D3E3F40,
0x41424344,0x45464748,0x494A4B4C,0x4D4E4F50,
0x51525354,0x55565758,0x595A5B5C,0x5D5E5F60,
0x61626364,0x65666768,0x696A6B6C,0x6D6E6F70,
0x71727374,0x75767778,0x797A7B7C,0x7D7E7F80};

void RCC_Config_My(void)
{
ErrorStatus HSEStartUpStatus;//The flag for test if success

RCC_HSEConfig(RCC_HSE_ON);//use extern clock
HSEStartUpStatus = RCC_WaitForHSEStartUp();//wait for HSE OK
if(HSEStartUpStatus== SUCCESS)//if it is OK
{
RCC_HCLKConfig(RCC_SYSCLK_Div1);//HCLK(AHB clock)
RCC_PCLK1Config(RCC_HCLK_Div2);//PCLK1(APB1 clock) can't over 36MHz
RCC_PCLK2Config(RCC_HCLK_Div1);//PCLK2(APB2 clock) can't over 72MHz
FLASH_SetLatency(FLASH_Latency_2);//FLASH clock control,SYSCLK0~24MHz Latency=0.SYSCLK25~48MHz Latency =1.SYSCLk 48~72MHz Latency=2
FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);//
RCC_PLLConfig(RCC_PLLSource_HSE_Div1,RCC_PLLMul_9);//HSE if use for SYSTEM clock,PLL is 72MHz
RCC_PLLCmd(ENABLE);// enable PLL
while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY)==RESET);//wait for PLL OK
RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);//System clock is PLL clock
while(RCC_GetSYSCLKSource()!=0x08);//wait for System clock is OK
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1,ENABLE);//enable DMA1 clock
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_FSMC, ENABLE);//enable FSMC clock
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD | RCC_APB2Periph_GPIOG | RCC_APB2Periph_GPIOE |
RCC_APB2Periph_GPIOF, ENABLE);
}

}

void SRAM_FSMC_Config_My(void)
{
FSMC_NORSRAMInitTypeDef FSMC_NORSRAMInitStructure;
FSMC_NORSRAMTimingInitTypeDef p;
GPIO_InitTypeDef GPIO_InitStructure;


//config SRAM DATA lines configuration D0------->>D15
//please reference STC datasheet FSMC PINs Page37
//D0---->>D3 D13------->>D15
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_8 | GPIO_Pin_9 |
GPIO_Pin_10 | GPIO_Pin_14 | GPIO_Pin_15;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOD, &GPIO_InitStructure);

//D4----->>D12
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7 | GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 |
GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14 |
GPIO_Pin_15;
GPIO_Init(GPIOE, &GPIO_InitStructure);

//config SRAM ADRESS lines configuration A0------->>A18
//please reference STC datasheet FSMC PINs Page37
//A0------>>A9
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3 |
GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_12 | GPIO_Pin_13 |
GPIO_Pin_14 | GPIO_Pin_15;
GPIO_Init(GPIOF, &GPIO_InitStructure);

//A10---->>A15
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3 |
GPIO_Pin_4 | GPIO_Pin_5;
GPIO_Init(GPIOG, &GPIO_InitStructure);

//A16------->>A18
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11 | GPIO_Pin_12 ;
GPIO_Init(GPIOD, &GPIO_InitStructure);

//config SRAM NOE NWE lines configuration
//please reference STC datasheet FSMC PINs Page37
//NOE-->PD4
//NWE ----->PD5
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 |GPIO_Pin_5;
GPIO_Init(GPIOD, &GPIO_InitStructure);

//config SRAM NE3 lines configuration
//please reference STC datasheet FSMC PINs Page37
//NE4-->PG12
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
GPIO_Init(GPIOG, &GPIO_InitStructure);

//config SRAM NBL0, NBL1 lines configuration
//please reference STC datasheet FSMC PINs Page37
//NBL0(LB)-->PE0 NBL1(UB)-->PE1
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1;
GPIO_Init(GPIOE, &GPIO_InitStructure);

//FSMC Structure Config
p.FSMC_AddressSetupTime = 0;//The time is used for duration address set up time
p.FSMC_AddressHoldTime = 0;//The time is used for duration address hold time
p.FSMC_DataSetupTime = 2;//The time is used for duration data set up time
p.FSMC_BusTurnAroundDuration = 0;//The time is used for the duration Bus turn
p.FSMC_CLKDivision = 0;//The division of HCLK
p.FSMC_DataLatency = 0;//The time is memory clock cycle before get first data
p.FSMC_AccessMode = FSMC_AccessMode_A;//


FSMC_NORSRAMInitStructure.FSMC_Bank = FSMC_Bank1_NORSRAM3;//choose FSMC bank
FSMC_NORSRAMInitStructure.FSMC_DataAddressMux = FSMC_DataAddressMux_Disable;//Address and Data line is not muxed
FSMC_NORSRAMInitStructure.FSMC_MemoryType = FSMC_MemoryType_SRAM;//The type of externed memory
FSMC_NORSRAMInitStructure.FSMC_MemoryDataWidth = FSMC_MemoryDataWidth_16b;//The memory data widthy
FSMC_NORSRAMInitStructure.FSMC_BurstAccessMode = FSMC_BurstAccessMode_Disable;//disable burst access ,because this is only used for synchronous memory
FSMC_NORSRAMInitStructure.FSMC_WaitSignalPolarity = FSMC_WaitSignalPolarity_Low;//only used in burst mode
FSMC_NORSRAMInitStructure.FSMC_WrapMode = FSMC_WrapMode_Disable; //only used in burst mode
FSMC_NORSRAMInitStructure.FSMC_WaitSignalActive = FSMC_WaitSignalActive_BeforeWaitState;//only used in burst mode
FSMC_NORSRAMInitStructure.FSMC_WriteOperation = FSMC_WriteOperation_Enable;//enable write
FSMC_NORSRAMInitStructure.FSMC_WaitSignal = FSMC_WaitSignal_Disable;//only used in burst mode
FSMC_NORSRAMInitStructure.FSMC_ExtendedMode = FSMC_ExtendedMode_Disable;//disable extended mode
FSMC_NORSRAMInitStructure.FSMC_WriteBurst = FSMC_WriteBurst_Disable;//disable burst write mode
FSMC_NORSRAMInitStructure.FSMC_ReadWriteTimingStruct = &p;
FSMC_NORSRAMInitStructure.FSMC_WriteTimingStruct = &p;

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

在嵌入式開發(fā)中,STM32的時鐘系統(tǒng)因其靈活性和復(fù)雜性成為開發(fā)者關(guān)注的焦點(diǎn)。然而,看似簡單的時鐘配置背后,隱藏著諸多易被忽視的陷阱,輕則導(dǎo)致系統(tǒng)不穩(wěn)定,重則引發(fā)硬件損壞。本文從時鐘源選擇、PLL配置、總線時鐘分配等關(guān)鍵環(huán)...

關(guān)鍵字: STM32 時鐘系統(tǒng)

在嵌入式系統(tǒng)開發(fā)中,STM32系列微控制器的內(nèi)部溫度傳感器因其低成本、高集成度特性,廣泛應(yīng)用于設(shè)備自檢、環(huán)境監(jiān)測等場景。然而,受芯片工藝差異和電源噪聲影響,其原始數(shù)據(jù)存在±1.5℃的固有誤差。本文從硬件配置、校準(zhǔn)算法、軟...

關(guān)鍵字: STM32 溫度傳感器

在能源效率與智能化需求雙重驅(qū)動下,AC-DC轉(zhuǎn)換器的數(shù)字控制技術(shù)正經(jīng)歷從傳統(tǒng)模擬方案向全數(shù)字架構(gòu)的深刻變革。基于STM32微控制器的PFM(脈沖頻率調(diào)制)+PWM(脈沖寬度調(diào)制)混合調(diào)制策略,結(jié)合動態(tài)電壓調(diào)整(Dynam...

關(guān)鍵字: AC-DC STM32

當(dāng)前智能家居產(chǎn)品需求不斷增長 ,在這一背景下 ,對現(xiàn)有澆花裝置缺陷進(jìn)行了改進(jìn) ,設(shè)計出基于STM32單片機(jī)的全 自動家用澆花機(jī)器人。該設(shè)計主要由機(jī)械結(jié)構(gòu)和控制系統(tǒng)構(gòu)成 ,機(jī)械結(jié)構(gòu)通過麥克納姆輪底盤與噴灑裝置的結(jié)合實(shí)現(xiàn)機(jī)器...

關(guān)鍵字: STM32 麥克納姆輪 安全可靠 通過性強(qiáng)

用c++編程似乎是讓你的Arduino項(xiàng)目起步的障礙嗎?您想要一種更直觀的微控制器編程方式嗎?那你需要了解一下Visuino!這個圖形化編程平臺將復(fù)雜電子項(xiàng)目的創(chuàng)建變成了拖動和連接塊的簡單任務(wù)。在本文中,我們將帶您完成使...

關(guān)鍵字: Visuino Arduino ESP32 STM32

基于STM32與LoRa技術(shù)的無線傳感網(wǎng)絡(luò)憑借其低功耗、廣覆蓋、抗干擾等特性,成為環(huán)境監(jiān)測、工業(yè)自動化等場景的核心解決方案。然而,如何在復(fù)雜電磁環(huán)境中實(shí)現(xiàn)高效休眠調(diào)度與動態(tài)信道優(yōu)化,成為提升網(wǎng)絡(luò)能效與可靠性的關(guān)鍵挑戰(zhàn)。本...

關(guān)鍵字: STM32 LoRa

在實(shí)時控制系統(tǒng)、高速通信協(xié)議處理及高精度數(shù)據(jù)采集等對時間敏感的應(yīng)用場景中,中斷響應(yīng)延遲的優(yōu)化直接決定了系統(tǒng)的可靠性與性能上限。STM32系列微控制器憑借其靈活的嵌套向量中斷控制器(NVIC)、多通道直接內(nèi)存訪問(DMA)...

關(guān)鍵字: STM32 DMA

數(shù)字電源技術(shù)向高功率密度、高效率與高動態(tài)響應(yīng)方向加速演進(jìn),STM32微控制器憑借其基于DSP庫的算法加速能力與對LLC諧振變換器的精準(zhǔn)控制架構(gòu),成為優(yōu)化電源動態(tài)性能的核心平臺。相較于傳統(tǒng)模擬控制或通用型數(shù)字控制器,STM...

關(guān)鍵字: STM32 數(shù)字電源

STM32微控制器憑借其針對電機(jī)控制場景的深度優(yōu)化,成為高精度、高可靠性驅(qū)動系統(tǒng)的核心選擇。相較于通用型MCU,STM32在電機(jī)控制領(lǐng)域的核心優(yōu)勢集中體現(xiàn)在FOC(磁場定向控制)算法的硬件加速引擎與PWM死區(qū)時間的動態(tài)補(bǔ)...

關(guān)鍵字: STM32 電機(jī)控制

無線充電技術(shù)加速滲透消費(fèi)電子與汽車電子領(lǐng)域,基于Qi協(xié)議的無線充電發(fā)射端開發(fā)成為智能設(shè)備能量補(bǔ)給的核心課題。傳統(tǒng)模擬控制方案存在響應(yīng)滯后、參數(shù)調(diào)整困難等問題,而基于STM32的數(shù)字PID控制結(jié)合FOD(Foreign O...

關(guān)鍵字: STM32 無線充電
關(guān)閉