www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當(dāng)前位置:首頁 > 智能硬件 > 機器人
[導(dǎo)讀] 1月6日江蘇衛(wèi)視《最強大腦》,上演了一場精彩的人機對決,這次的戰(zhàn)場不再是圍棋,而是人臉識別。 人類的出戰(zhàn)代表為王峰(微博),其為90后世界記憶大師,《最強大腦》名人堂輪值主席。

1月6日江蘇衛(wèi)視《最強大腦》,上演了一場精彩的人機對決,這次的戰(zhàn)場不再是圍棋,而是人臉識別。

人類的出戰(zhàn)代表為王峰(微博),其為90后世界記憶大師,《最強大腦》名人堂輪值主席。

2015年以隊長身份參加《最強大腦第二季》,在《最強大腦》中德國際對抗賽中,王峰率領(lǐng)中國代表隊4:0完勝德國隊,本人以一敵二,并打破快速記憶撲克牌世界紀(jì)錄。

機器的一方則是百度機器人“小度”,百度大腦在人工智能領(lǐng)域的很多研究成果都植入到其身上。

“百度大腦”已建成超大規(guī)模的神經(jīng)網(wǎng)絡(luò),擁有萬億級的參數(shù)、千億樣本、千億特征訓(xùn)練,能模擬人腦的工作機制。百度大腦如今智商已經(jīng)有了超前的發(fā)展,在一些能力上甚至超越了人類。

在人臉識別技術(shù)的國際測評中,百度最高能達到99.77%的準(zhǔn)確率,2015年曾獲得過兩次世界第一。而人機大戰(zhàn)的第一場就是PK人臉識別。

“小度”將與名人堂選手約戰(zhàn)三場,主要在人臉識別、語音識別上面PK,前三期人機大戰(zhàn),采用三局兩勝制,如果百度大腦全勝,將參加角逐最后的腦王爭霸。

第一輪:跨年齡識別

嘉賓(章子怡)從20張蜜蜂少女隊成員童年照中挑出3張高難度照片,選手通過動態(tài)錄像表演將所選童年照和在場的成年少女向匹配。選擇正確者得1分。

蜜蜂少女隊人員眾多且每個人在賽場上化妝表演, 不排除有微整形、戴美瞳等因素干擾。

此外,挑選的童年照都在0-4歲范圍內(nèi),與現(xiàn)在成年少女隊的年齡跨度比較大。

同時,比賽現(xiàn)場有實時照片傳輸、現(xiàn)場攝影機捕捉人臉圖像晃動、燈光干擾等因素都會影響人工智能的識別準(zhǔn)確率。

最為困難的是,蜜蜂少女隊人員中有一對雙胞胎,恰巧被現(xiàn)場嘉賓抽中。

最終,事先并不知情的王峰未能從雙胞胎中區(qū)分出差別,導(dǎo)致判斷錯誤,第一輪得0分。


 

而百度機器人則給出了兩個結(jié)果,區(qū)別是相似度僅相差0.01%,相似度較高那個最終被證明是正確答案,從而拿到第一輪的1分。

第一輪過后,人機大戰(zhàn)的比分是1:0,人類暫時落后。

第二輪:千臉跨年齡識別

人機共同觀察一位30歲以上的觀眾,隨后將他從30張小學(xué)集體照中找出。這一輪在上一輪的基礎(chǔ)上增加了難度,因此分值提高,選擇正確者得2分。

這一回合樣本容量大,30張集體照大約需要在1000-2000個人臉中找到對應(yīng)的人,年齡跨度也覆蓋在80、90后等年齡層中。

最終,機器和王峰先后在合照中正確識別出了嘉賓選擇出的觀眾,均得2分。加上第一輪的得分,機器最終得3分,王峰得2分。

經(jīng)過兩輪角逐,百度機器人以微弱優(yōu)勢勝出,王峰為雙胞胎那萬分之一的差別付出了代價。

人臉識別的技術(shù)難點

人類大腦從上百萬年前開始就擁有了人臉識別的能力,而機器沒有直覺,也并沒有久遠的進化歷史,只能靠分析數(shù)據(jù)來學(xué)習(xí)。

計算機只認(rèn)識0和1,所以它必須通過無數(shù)次的學(xué)習(xí)來找到人類直覺的規(guī)律并將它轉(zhuǎn)變成0和1存儲在腦子里,從而模擬人類通過直覺思考的過程。

人臉識別技術(shù)研究的困難,不同于普通的圖像識別。就人的臉部特征而言,每個人的臉部結(jié)構(gòu)都是相似的,這對于利用人臉區(qū)分人類個體不利,還有一些特殊情況,比如雙胞胎甚至多胞胎。

其次就是表情、光照條件、整容等外因影響。不同的表情、角度觀察,光照條件的影響,人臉遮蓋物,如口罩、墨鏡、頭發(fā)、胡須,甚至是整容、P圖等行為,都增加了人臉識別的難度。

而對雙胞胎的識別,技術(shù)上就更困難了。

人臉識別是在臉部骨骼上取盡可能多的點,通過計算機把這些點分別與自己已經(jīng)存儲的臉比較,有差別就判斷出來了。因為雙胞胎骨骼太相似,導(dǎo)致差別特別細微,所以取的面部骨骼點不夠多的話是識別不出來的。

人臉識別主要步驟

(以比賽為例,現(xiàn)場小度識別蜜蜂少女成員的原理流程圖)

具體分解如下:

Step 1 人臉檢測:

根據(jù)眼睛、眉毛、嘴巴、鼻子等器官的特征以及相互之間的幾何位置關(guān)系來檢測人臉,即在在一副圖像或一序列圖像(比如視頻)中判斷是否有人臉,若有則返回人臉的大小、位置等信息。

Step 2 人臉圖像預(yù)處理:

系統(tǒng)獲取的原始圖像由于受到各種條件的限制和隨機干擾,往往不能直接使用,必須在圖像處理的早期階段對它進行灰度校正、噪聲過濾等圖像預(yù)處理。

人臉圖像的預(yù)處理主要包括人臉對準(zhǔn),人臉圖像的增強,以及歸一化等工作。

人臉對準(zhǔn)是為了得到人臉位置端正的人臉圖像;

圖像增強是為了改善人臉圖像的質(zhì)量,不僅在視覺上更加清晰圖像,而且使圖像更利于計算機的處理與識別。

歸一化工作的目標(biāo)是取得尺寸一致,灰度取值范圍相同的標(biāo)準(zhǔn)化人臉圖像。

【人臉圖像的預(yù)處理】

Step 3 人臉圖像特征提取:

人臉特征提取就是針對人臉的某些特征進行的。人臉特征提取,也稱人臉表征,它是對人臉進行特征建模的過程。

Step 4 人臉圖像匹配與識別:

人臉識別就是將待識別的人臉特征與已得到的人臉特征模板進行比較,根據(jù)相似程度對人臉的身份信息進行判斷。這一過程又分為兩類:

一類是人臉確認(rèn),是一對一進行圖像比較的過程,將某人面像與指定人員面像進行一對一的比對,根據(jù)其相似程度(一般以是否達到或超過某一量化的可信度指標(biāo)/閥值為依據(jù))來判斷二者是否是同一人。

另一類是人臉辨認(rèn),是一對多進行圖像匹配對比的過程。將某人面像與數(shù)據(jù)庫中的多人的人臉進行比對(有時也稱“一對多”比對),并根據(jù)比對結(jié)果來鑒定此人身份,或找到其中最相似的人臉,并按相似程度的大小輸出檢索結(jié)果。

百度大腦提升跨年齡人臉識別的方法

影響人臉識別的因素有很多,其中影響人臉檢測的因素有:光照、人臉姿態(tài)、遮擋程度;

影響特征提取的因素有:光照、表情、遮擋、年齡、模糊是影響人臉識別精度的關(guān)鍵因素。而在跨年齡人臉檢測中影響因素更多。

一般而言,在跨年齡階段人臉識別中,類內(nèi)變化通常會大于類間變化,這造成了人臉識別的巨大困難。同時,跨年齡的訓(xùn)練數(shù)據(jù)難以收集。沒有足夠多的數(shù)據(jù),基于深度學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò)很難學(xué)習(xí)到跨年齡的類內(nèi)和類間變化。

基于第一點,百度IDL的人臉團隊選擇用度量學(xué)習(xí)的方法。即通過學(xué)習(xí)一個非線性投影函數(shù),把圖像空間投影到特征空間中。在這個特征空間里,跨年齡的同一個人的兩張人臉的距離會比不同人的相似年齡的兩張人臉的距離要小。

針對第二點,考慮到跨年齡人臉的稀缺性。百度用一個用大規(guī)模人臉數(shù)據(jù)訓(xùn)練好的模型作為底座,然后用跨年齡數(shù)據(jù)對他做更新。這樣不容易過擬合。

將這兩點結(jié)合起來做端到端的訓(xùn)練,可以大幅度提升跨年齡識別的識別率。

另外,百度人臉測試集有2百萬人的2億張圖片作為訓(xùn)練樣本數(shù)據(jù)。

專家點評

百度首席科學(xué)家吳恩達:小度不僅代表百度人工智能,更代表中國

百度首席科學(xué)家吳恩達

世界頂級的科學(xué)家也只能理解人腦運作機制的一部分,百度人工智能算法參考人腦較少,更多基于數(shù)據(jù)分析和深度學(xué)習(xí)。

在這次比賽中,我們選擇的競賽項目對于機器來說非常非常困難,涉及到人臉識別、語音識別等,但事實上這些對于人類來說卻相對容易。人們可以通過直覺來進行很好地判斷,比如見到一個人,你不假思索就能認(rèn)出他是誰。但是機器必須從大量數(shù)據(jù)進行訓(xùn)練,有些項目中甚至需要識別不清晰的、老舊的照片,所以我認(rèn)為這對于機器來說是個巨大的挑戰(zhàn)。

人臉識別這項技能,人類大腦從上百萬年前開始就擁有了,而機器沒有直覺,也并沒有久遠的進化歷史,只能靠分析數(shù)據(jù)來學(xué)習(xí)。所以這項技能對于哪怕是世界上最先進的AI技術(shù)也是非常困難的。

今天,我們基于強大的數(shù)據(jù)分析,很容易識別兩張近期的照片。但是對于識別整容、化濃妝或者十幾年跨度的照片,我們并沒有大量的數(shù)據(jù)可以分析。所以這是人臉識別技術(shù)遇到的世界性的挑戰(zhàn),也是今天比賽中最大的難點之一。

全世界棋類比賽中頂級的選手很少,人臉識別能力每個人都具備。這次人機大戰(zhàn),是頂級的人臉識別選手和擅長棋類游戲的人工智能比拼,很公平。

人類正在步入人工智能時代,不久的未來,人工智能技術(shù)就能應(yīng)用到走失兒童項目,強大的人工智能創(chuàng)造者依然是人類。

小度目前不能完全明白人類的思想,但是要向王峰還有名人堂的頂級大腦學(xué)習(xí), 更好服務(wù)人類。小度不僅代表百度人工智能,更代表中國。這次人機大戰(zhàn)是百度大腦第一次出現(xiàn)在公開場合的比賽,結(jié)果無法知道,只能靜待其觀。

《最強大腦》Dr.魏:人工智能的后面也是人,是科學(xué)家工作的結(jié)晶

人認(rèn)為最簡單的事情,對人工智能來說是很困難的。比如運動,雖然三歲的時候你就會爬樓梯,但是現(xiàn)在我們都不知道怎么讓機器人像人一樣流暢地爬樓梯,特別是樓梯的好多參數(shù)是無法預(yù)知的時候。

人可以爬各種各樣的樓梯,在不同光照條件,不同身體狀況等。但是機器人到現(xiàn)在無法象人一樣流暢。從進化上來說,運動,包括像爬樓梯這樣的運動,大腦很早就學(xué)會了。

而人學(xué)會圍棋對進化中的大腦來說,是很晚才開始玩的。所以,對人來說,樓梯容易一點,圍棋難一點。但是可能對機器來說圍棋更容易一些,上樓梯更難一些。

感知和運動,這是人類擅長的。這個事情我們就干了幾百萬年,我們恰恰不擅長邏輯和運算為代表的抽象思維能力。機器不擅長感知和運動。你會發(fā)現(xiàn)機器人能下圍棋或者記下海量的信息,但是沒有辦法像人這樣運動,或者像人一樣去感知這個復(fù)雜而快速變化的世界。

人工智能目前擅長的是一個規(guī)則定義清楚的東西,他能夠解決,就是圍棋。圍棋是有規(guī)則的,他是有一個目標(biāo)狀態(tài),就是我占得去比你大,我把你圍死了,國際象棋更是,我就把你kill。目前人工智能算法能解決的問題很多都是有規(guī)則的,或者目標(biāo)狀態(tài)定義清楚的。但是人類社會,人腦要實現(xiàn)的東西并沒有規(guī)則,甚至連準(zhǔn)確的目標(biāo)狀態(tài)都沒法提前知道。

人的很多技能,就是一直練下去一直會提升。除了有些是生理上的衰老,你的肌肉系統(tǒng)衰老,那沒辦法。但是很多技能,如果不被物理身體限制的話,很多技能都是越練越好。另外,人類的整體智商是逐年提升的,所謂的弗林效應(yīng),平均智商每10年提高3個點左右,當(dāng)然,主要提高的是抽象思維能力。

人工智能后面也是人,它是很多工程師和科學(xué)家工作的結(jié)晶。機器贏人類,這是科技發(fā)展的必然結(jié)果。這天遲早會到來,只是來的早和晚的事情。

科技的發(fā)展,其實是超越我們的想象的。這一天遲早會到來,包括我們目前還不能實現(xiàn)的通用人工智能。只是現(xiàn)在的工程師做的是一個一個區(qū)域地攻克,有些硬骨頭要啃。在這舞臺上你可以說在某些領(lǐng)域人工智能已經(jīng)達到登峰造極的程度了。

人工智能在面孔識別上超過人類。應(yīng)該是2012年,就說人臉識別超過了人類的平均水平,是里程碑事件。那現(xiàn)在,百度大腦超越的人類中出類拔萃的一群人??梢哉f在這個專業(yè)方向上,人工智能的準(zhǔn)確率已經(jīng)達到很高的水準(zhǔn),下一步應(yīng)該是提高運算的效率和能耗。

任何新技術(shù)出現(xiàn)的時候老百姓都恐慌,汽車出現(xiàn)恐慌,火車出現(xiàn)恐慌,計算機出現(xiàn)恐慌。這個是終極恐慌,因為汽車出現(xiàn)的恐慌只是這個東西很快,能撞死我?;疖囈彩且粯印?/p>

老百姓第一想到的是自己的失業(yè),自動化的工廠起來想的是產(chǎn)業(yè)工人的失業(yè),人工智能的出現(xiàn),可能讓很多一般智力活動(包括很多白領(lǐng)的工作)甚至專業(yè)人員(包括某些領(lǐng)域的醫(yī)生)的工作受到威脅。但是,我覺得人類的整體的失業(yè)率不一定會下滑,有些的工作死了,新的工作又產(chǎn)生了。

百度深度學(xué)習(xí)研究院主任林元慶: 打敗人類不是目的

百度這幾年在人工智能上投入了相當(dāng)?shù)牧α孔黾夹g(shù)研發(fā),我們想在人比較擅長的領(lǐng)域和人較量一下,到底我們的水平做到什么樣了,在這些方面是不是和人接近,還是說有很大的差距。

打敗人類不是目的,希望我們能演化出很好的技術(shù)服務(wù)人類。

百度這幾年在人工智能上投入了相當(dāng)?shù)牧α孔黾夹g(shù)研發(fā),我們想在人比較擅長的領(lǐng)域和人較量一下,到底我們的水平做到什么樣了,在這些方面是不是和人接近,還是說有很大的差距。

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫毥谦F公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險,如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機 衛(wèi)星通信

要點: 有效應(yīng)對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅持高質(zhì)量發(fā)展策略,塑強核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運營商 數(shù)字經(jīng)濟

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術(shù)學(xué)會聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(shù)(集團)股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉