摘要
微波功率放大器主要分為真空和固態(tài)兩種形式。基于真空器件的功率放大器,曾在軍事裝備的發(fā)展史上扮演過重要角色,而且由于其功率與效率的優(yōu)勢,現(xiàn)在仍廣泛應(yīng)用于雷達、通信、電子對抗等領(lǐng)域。后隨著GaAs晶體管的問世,固態(tài)器件開始在低頻段替代真空管,尤其是隨著GaN,SiC等新材料的應(yīng)用,固態(tài)器件的競爭力已大幅提高。本文將對兩種器件以及它們競爭與融合的產(chǎn)物——微波功率模塊(MPM)的發(fā)展情況作一介紹與分析,以充分了解國際先進水平,也對促進國內(nèi)技術(shù)的發(fā)展有所助益。

1.? ?真空放大器件
跟固態(tài)器件相比,真空器件的主要優(yōu)點是工作頻率高、頻帶寬、功率大、效率高,主要缺點是體積和質(zhì)量均較大。真空器件主要包括行波管、磁控管和速調(diào)管,它們具有各自的優(yōu)勢,應(yīng)用于不同的領(lǐng)域。其中,行波管主要優(yōu)勢為頻帶寬,速調(diào)管主要優(yōu)勢為功率大,磁控管主要優(yōu)勢為效率高。行波管應(yīng)用最為廣泛,因此本文主要以行波管為例介紹真空器件。

公開報道顯示,美軍作戰(zhàn)平臺中真空器件被大量使用,是現(xiàn)役電子戰(zhàn)、雷達和通信的主要功率器件。新開發(fā)的高頻段、小型化行波管及功率模塊進一步推動高性能裝備的不斷出現(xiàn)。典型應(yīng)用包括車載防空反導系統(tǒng)、地基遠程預警與情報系統(tǒng)、機載火控系統(tǒng)、無人機通信系統(tǒng)、電子戰(zhàn)系統(tǒng)、空間以及衛(wèi)星通信系統(tǒng)等。下面介紹當前正在研究和應(yīng)用的行波管的幾種重要技術(shù)。
行波管有源組陣的形式分為單元放大式和子陣放大式兩種。與無源相控陣相比,其單個行波管的功率要求低,器件的可靠性和壽命相對較高。同時各通道相對獨立,某通道出現(xiàn)故障不會影響到其他通道,因此系統(tǒng)的可靠性高。而且整個輻射陣面可以分多個區(qū)域獨立工作,實現(xiàn)系統(tǒng)多目標、多任務(wù)的能力。與固態(tài)有源相控陣相比,作用距離更遠,威力更大,且配套的冷卻車和電源車相對短小精悍,系統(tǒng)機動性高,戰(zhàn)場生存能力強。由于其全金屬、陶瓷密封結(jié)構(gòu),在面對高功率微波武器時的生存能力更強。在相同的陣面功率時所需的單元數(shù)將少1個數(shù)量級,因此成本會大幅降低。與單脈沖雷達相比,其作用距離、分辨率、多目標、多任務(wù)、壽命及任務(wù)可靠性等指標會更好。目前,國內(nèi)正在開展基于行波管的Ku波段稀布陣低柵瓣技術(shù)研究,以期在陣元間距30 mm的條件下實現(xiàn)?20 dB的柵瓣。
另外,與行波管有源組陣相配套的小型化大功率環(huán)行器研究進展迅速。采用不等尺寸單元組成的非周期排列方式、徑向等間距排列的非周期環(huán)形陣和子陣非規(guī)則排列等新型陣面技術(shù)能夠很好解決大單元間距引起的柵瓣問題,這些共同保障行波管有源組陣的推進。


2.? ?固態(tài)放大器件
固態(tài)器件,也就是半導體電子器件。與TWTA類似,SSPA通常需配置集成電源,其不同在于,SSPA使用場效應(yīng)晶體管作為射頻功率放大的主要器件,工作電壓低,實現(xiàn)也更加容易。由于其單體輸出功率較低,為了實現(xiàn)高功率放大,SSPA需要將許多功率晶體管并聯(lián)放置,從而實現(xiàn)輸出功率的合成。固態(tài)器件具有體積小、噪聲低、穩(wěn)定性好的優(yōu)點,缺點是應(yīng)用頻帶低、單體輸出功率小、效率低 。

近年來,在微波發(fā)射系統(tǒng)中普遍應(yīng)用多個微波單片集成電路(MMIC)進行功率合成以獲得更高的輸出功率。而采用GaN材料研制的MMIC單片功率密度高、電流小、效率高。國內(nèi)已采用Ku頻段GaN材料單片和一款波導合成網(wǎng)絡(luò)研制出一種功率放大器,并通過多個該放大器進行功率合成,得到了更大的寬帶輸出功率,在軍事及民用領(lǐng)域均可適用。另提出了一種基于等效電路參數(shù)多偏差統(tǒng)計模型的微波GaN高電子遷移率晶體管(HEMT)功率放大器的設(shè)計方法,并利用統(tǒng)計建模方法驗證了統(tǒng)計模型。采用此模型進行Ku波段GaN HEMT功率放大器設(shè)計,具有較高的漏極效率,模擬結(jié)果在統(tǒng)計上與測量結(jié)果一致。
3.? ?微波功率模塊
如前所述,電真空器件單管功率大于固態(tài)器件,可以應(yīng)用的頻段也更高,但真空器件需要高壓電源,體積和質(zhì)量較大。而固態(tài)功率器件由于半導體本身材料限制,效率較低,而且不適用于高頻率。在此情況下,微波功率模塊(MPM)應(yīng)運而生。MPM作為一種新型的微波功率器件,其最大的特點在于充分利用了真空器件和固態(tài)器件的優(yōu)點,并避免了其各自的缺點,從而獲得高增益、低噪聲、大功率、高效率等二者單獨使用無法獲得的優(yōu)良性能。其集成電源的設(shè)計使用戶不用直接面對高壓,提高了安全性。

MPM將兩種器件的優(yōu)點有機結(jié)合,具備了大功率、高效率、小體積和低噪聲等優(yōu)點,可用于通信、電子對抗以及民用領(lǐng)域。對于機載和星載等應(yīng)用平臺,由于其對放大器的體積、質(zhì)量等要求嚴格,MPM也將具有很好的前景。另外,由于MPM應(yīng)用非常方便,傳統(tǒng)的TWTA也有被MPM替代的趨勢。

MPM諧波抑制均控制在?11~4 dBc之間,雜波控制在?60~40 dBc之間。MPM效率主要取決于功率器件和集成電源的效率,目前國外集成電源效率一直處于領(lǐng)先水平,MPM產(chǎn)品效率均在30%左右。在小型化上,各廠家MPM尺寸上嚴格把控,總體控制較為成熟,相對集中在2~3 kg之間。而在尺寸上由于散熱、電磁兼容設(shè)計等不同,體積大小不一,部分產(chǎn)品達到了MPM小型化的極致,如L3公司推出的Ka頻段50 W產(chǎn)品,其型號為M1871,如圖4所示,注冊商標采用NanoMPM,尺寸為127 mm×76 mm×25 mm,且質(zhì)量僅為700 g。




實現(xiàn)MPM的小型化,首先要實現(xiàn)各組件自身的小型化。而行波管作為MPM的末級輸出,影響最為關(guān)鍵。L3公司推出的產(chǎn)品M1870(Ku波段)和M1871(Ka波段)。它們的功率分別為40 W和50 W,尺寸分別為140 mm×77 mm×25 mm、重700 g和168 mm×104 mm×25 mm、重1.13 kg,代表了MPM小型化的最高水平。集成電源也是一個重要部分。信息工程大學在2016年研制的厚度不足12 mm、效率達到94%左右的用于MPM的EPC組件,如圖8所示,在超薄設(shè)計上達到國內(nèi)先進水平,為MPM的小型化設(shè)計和陣列化應(yīng)用奠定了基礎(chǔ)。

MPM模塊化的設(shè)計為大批量生產(chǎn)提供了便利,可使成本進一步降低,在模塊化基礎(chǔ)上生產(chǎn)的系列產(chǎn)品可根據(jù)不同場合要求進行設(shè)計,從而滿足不同需求。如針對雷達應(yīng)用的工作頻段13.5~18 GHz功率110 W產(chǎn)品、針對數(shù)據(jù)通信應(yīng)用的工作頻段14.5~15.5 GHz功率100 W產(chǎn)品,均采用了統(tǒng)一的2 250 mm×232 mm×35 mm封裝,系列產(chǎn)品標準化程度較高。另外,針對電子作戰(zhàn)、衛(wèi)星通信傳輸?shù)葘掝l帶高功率的要求,也在進行相應(yīng)的標準化設(shè)計。
隨著各類信息系統(tǒng)和器件不斷朝著微型化和集成化的方向發(fā)展,雙通道MPM、雙模MPM和T/R型MPM等將成為研究重點。雙通道MPM可同時實現(xiàn)兩路干擾信號輸出,也具備空間合成能力,功率密度較傳統(tǒng)MPM提高近1倍。當一路行波管出現(xiàn)故障時,MPM仍可在功率減半的條件下工作,提高MPM的冗余度。雙模MPM同時實現(xiàn)準連續(xù)波和脈沖兩種工作模式,實現(xiàn)新型的雙模干擾體制,為小型化、高性價比的雷達干擾一體化奠定基礎(chǔ)。T/R型MPM使系統(tǒng)的天線可以收發(fā)共孔徑,突破行波管收發(fā)功能,解決環(huán)型器頻段限制和損耗問題。
MPM作為一種全新的功率器件,將真空和固態(tài)器件進行了有效結(jié)合,其應(yīng)用已經(jīng)覆蓋了軍事、民用等各個領(lǐng)域。針對應(yīng)用環(huán)境的不同,MPM也可通過合理選擇器件的性能參數(shù),以滿足不同的需求。如滿足數(shù)據(jù)傳輸和通信的應(yīng)用,則提高線性度;滿足星載和機載系統(tǒng)的應(yīng)用,則增強效率;滿足電子對抗系統(tǒng)的應(yīng)用,則實現(xiàn)高增益。隨著技術(shù)的發(fā)展,MPM在無人機等平臺上也將表現(xiàn)出更為重要的作用。
4.? ?總 結(jié)
功率放大器的最新技術(shù)繼續(xù)得益于固態(tài)和真空技術(shù)的共同進步。通過對商業(yè)化產(chǎn)品和工業(yè)級的原型器件的統(tǒng)計,得出了當代放大器可用峰值飽和輸出功率隨頻率變化的曲線,如圖9所示。圖中將單個GaN MMIC的峰值飽和輸出功率與單個行波管器件和集成的MPM進行比較,可以看到,大于50 dBm的輸出功率水平代表了毫米波頻率范圍內(nèi)商業(yè)器件性能的前沿。特別是MPM適用于小體積、輕質(zhì)量、大功率、低成本(SWaP-efficient)等高性價比應(yīng)用平臺。

5.? ?結(jié) 論
本文首先分別介紹了真空和固態(tài)放大器件的組成和特點,然后介紹了它們的發(fā)展歷史、當前的技術(shù)研究狀況和未來發(fā)展趨勢。而后引出了兩種器件相結(jié)合的產(chǎn)物——微波功率模塊,并重點介紹了微波功率模塊的產(chǎn)生過程和當前國內(nèi)外的發(fā)展狀況,并對未來的發(fā)展趨勢進行了分析和預測。最后總結(jié)了當前三種器件的功率水平。
總之,真空和固態(tài)器件各有特點,應(yīng)根據(jù)具體應(yīng)用場合和工作頻段,做最優(yōu)選用。顯然,在高頻段上真空器件優(yōu)勢明顯,是實現(xiàn)毫米波、THz功率的有效途徑,因此需求巨大,應(yīng)繼續(xù)拓展。而在低頻段上由于GaN等新材料的應(yīng)用,SSPA占據(jù)著統(tǒng)治的地位,未來仍然會是研究的熱點。MPM則集成了二者的優(yōu)點,一方面解決了真空器件“加電難”的問題,另一方面又解決了固態(tài)器件在高頻段難以達到高功率的問題,因此必然會成為各個領(lǐng)域研究應(yīng)用的重點。我國的MPM也要在充分學習國外先進技術(shù)的基礎(chǔ)上,堅持小型化、標準化,并向高頻和寬帶方向發(fā)展,不斷改善薄弱環(huán)節(jié),增強工藝水平,實現(xiàn)產(chǎn)品的自主可控。(參考文獻略)
作者:李建兵, 林鵬飛, 郝保良, 孫建邦 來源:強激光與粒子束
免責聲明:本文內(nèi)容由21ic獲得授權(quán)后發(fā)布,版權(quán)歸原作者所有,本平臺僅提供信息存儲服務(wù)。文章僅代表作者個人觀點,不代表本平臺立場,如有問題,請聯(lián)系我們,謝謝!