同步關(guān)鍵的分布式系統(tǒng)
本文介紹了基于SAR ADC的系統(tǒng)和基于sigma-delta (∑-Δ) ADC的分布式數(shù)據(jù)采集系統(tǒng)同步的傳統(tǒng)方法,且探討了這兩種架構(gòu)之間的區(qū)別。我們還將討論同步多個(gè)Σ-Δ ADC時(shí)遇到的典型不便。最后,提出一種基于AD7770采樣速率轉(zhuǎn)換器(SRC)的創(chuàng)新同步方法,該方法顯示如何在不中斷數(shù)據(jù)流的情況下,在基于Σ-Δ ADC的系統(tǒng)上實(shí)現(xiàn)同步。
簡介
您是否曾經(jīng)想象過,自己正坐在一輛打破音障的超音速飛機(jī)上?自從協(xié)和式超音速噴射客機(jī)退役后,這似乎已經(jīng)成了一個(gè)不可能實(shí)現(xiàn)的夢想,除非您是一名軍機(jī)駕駛員或是一名宇航員。
身為一名電子工程師,我對一切事物的運(yùn)作方式都非常著迷,比如對布谷鳥鐘,我很好奇它的每個(gè)獨(dú)立系統(tǒng)如何與其他系統(tǒng)和諧地保持同步。
我們生活的各方各面也是這樣。我們生活在一個(gè)相互聯(lián)系的世界,一切都是同步的——從銀行服務(wù)器到智能手機(jī)的警報(bào)。區(qū)別就在于各種特定情況下要解決的問題的大小或復(fù)雜性、不同系統(tǒng)的同步與所需的精度(或者容差),或者要同步的系統(tǒng)的大小。
分布式系統(tǒng)
在獨(dú)立設(shè)計(jì)中,使用的本地時(shí)鐘或振蕩器本身就會進(jìn)行同步。但是,當(dāng)獨(dú)立設(shè)計(jì)需要集成到更廣泛的系統(tǒng)(我們稱之為分布式系統(tǒng))中時(shí),問題的角度會發(fā)生改變,獨(dú)立系統(tǒng)也應(yīng)該根據(jù)用例進(jìn)行設(shè)計(jì)。
要計(jì)算一個(gè)系統(tǒng)中的電器的瞬時(shí)功耗,必須同時(shí)測量電流和電壓。
通過快速分析,您可以用三種不同的方法來解決問題:
使用兩個(gè)同步單通道ADC來測量電流和電壓。
使用一個(gè)多通道同步采樣ADC,它的每個(gè)通道都可能有一個(gè)ADC,或者每個(gè)通道有一個(gè)采樣保持電路。
使用一個(gè)多路復(fù)用ADC,并且插入測量值,以補(bǔ)償電壓和電流測量之間的時(shí)間平移。
至此,您可能已經(jīng)獲得可以解決該問題的可靠解決方案,但是,如果我們擴(kuò)展系統(tǒng)需求,從原來的單件電器輻射到整個(gè)應(yīng)用,必須測量整個(gè)工廠中的每個(gè)交流電源插座的功率呢?現(xiàn)在,您原有的瞬時(shí)功耗設(shè)計(jì)必須分布應(yīng)用于整個(gè)工廠,而且要保證其設(shè)計(jì)能夠同時(shí)測量和計(jì)算每個(gè)交流電源插座功耗。
您現(xiàn)在面對的是一個(gè)分布式系統(tǒng),它由一組相互獨(dú)立但又緊密相關(guān)的子系統(tǒng)組成。每個(gè)子系統(tǒng)需要提供在同一時(shí)間點(diǎn)采樣的數(shù)據(jù),以便計(jì)算工廠的瞬時(shí)總功耗。
最后,如果我們繼續(xù)擴(kuò)展假設(shè)的應(yīng)用示例,想象一下,如果要將您的原始設(shè)計(jì)集成到國家電網(wǎng)之中。現(xiàn)在,您檢測的是數(shù)百萬瓦功率,任何一個(gè)鏈路出現(xiàn)問題都會導(dǎo)致可怕后果,例如因?yàn)閴毫?dǎo)致的線路損壞,反過來,這又可能導(dǎo)致停電,造成可怕后果,例如火災(zāi),或者醫(yī)院停電。
因此,所有系統(tǒng)都必須準(zhǔn)確同步,也就是說,在整個(gè)電網(wǎng)中捕獲的數(shù)據(jù)必須是在同一時(shí)刻捕獲,無論各數(shù)據(jù)所處的地理情況如何,具體如圖1所示。
圖1.電網(wǎng)同步。
在這些情況下,您可以將其視為一個(gè)關(guān)鍵的分布式系統(tǒng),且必須從每個(gè)感知節(jié)點(diǎn)獲得連續(xù)的、完全同步的數(shù)據(jù)流。
與電網(wǎng)示例類似,這些要求也適用于航空航天或工業(yè)市場中的許多其他關(guān)鍵分布式系統(tǒng)示例。
奈奎斯特ADC和過采樣ADC
在開始解釋如何同步多個(gè)ADC的采樣時(shí)刻之前,最好先了解每個(gè)ADC拓?fù)淙绾螞Q定何時(shí)采樣模擬輸入信號,以及每種架構(gòu)的優(yōu)缺點(diǎn)。
奈奎斯特或SAR ADC:該轉(zhuǎn)換器的最大輸入頻率由奈奎斯特或半采樣頻率決定。
過采樣或Σ-Δ ADC:最大輸入頻率一般與最大采樣頻率成比例,一般約為0.3。
一方面,SAR ADC的輸入信號采樣時(shí)刻通過施加于轉(zhuǎn)換開始引腳的外部脈沖進(jìn)行控制。如圖2所示,將一個(gè)通用轉(zhuǎn)換開始信號應(yīng)用到被同步系統(tǒng)中每個(gè)SAR ADC上,它們都會在轉(zhuǎn)換起始信號的邊緣同時(shí)觸發(fā)采樣。只要確保信號之間沒有明顯的延遲,即轉(zhuǎn)換開始脈沖在同一時(shí)刻及時(shí)到達(dá)每個(gè)SAR ADC,系統(tǒng)同步就很容易實(shí)現(xiàn)。注意,到達(dá)轉(zhuǎn)換開始引腳的脈沖與實(shí)際采樣時(shí)刻之間的傳播延遲不能因設(shè)備而不同,在采樣速度相對較慢的精密ADC中,這種延遲不顯著。