在當(dāng)前的全球能源危機(jī)中,重點(diǎn)是效率,電子產(chǎn)品正面臨著在提供高性能的同時(shí)降低功耗的艱巨挑戰(zhàn)。由于這場(chǎng)危機(jī),世界各地的各種政府機(jī)構(gòu)已經(jīng)或正在尋求提高其各自規(guī)格中眾多產(chǎn)品的效率標(biāo)準(zhǔn)。使用傳統(tǒng)的硬開關(guān)轉(zhuǎn)換器將難以滿足這些效率規(guī)范。電源設(shè)計(jì)人員將需要考慮軟開關(guān)拓?fù)湟蕴岣咝什⒃试S更高頻率的操作。
EPAD MOSFET 是一種有源器件,可在大量設(shè)計(jì)中用作基本電路元件。有許多電路可以利用它們。使用這些 EPAD MOSFET 器件的潛在設(shè)計(jì)和用途的數(shù)量?jī)H受設(shè)計(jì)人員的需求和想象力的限制。
為物聯(lián)網(wǎng)應(yīng)用選擇電子元件的兩個(gè)關(guān)鍵標(biāo)準(zhǔn)是功率預(yù)算和性能。自從電子產(chǎn)品問世以來,就一直在這兩者之間進(jìn)行權(quán)衡——要么獲得最佳功耗,要么獲得最高性能。根據(jù)應(yīng)用程序,系統(tǒng)架構(gòu)師對(duì)系統(tǒng)中的不同組件有不同的要求。例如,系統(tǒng)可能需要高性能控制器但低功耗存儲(chǔ)器。一個(gè)典型的案例是可穿戴設(shè)備,其中控制器需要功能強(qiáng)大,但由于 SRAM 用作暫存器,因此預(yù)計(jì)它具有盡可能低的功耗。
在閾值電壓或低于閾值電壓時(shí),EPAD MOSFET 在稱為亞閾值區(qū)域的工作區(qū)域中表現(xiàn)出關(guān)斷特性。這是 EPAD MOSFET 傳導(dǎo)通道根據(jù)施加的柵極電壓快速關(guān)閉的區(qū)域。由柵電極上的柵電壓引起的溝道呈指數(shù)下降,因此導(dǎo)致漏極電流呈指數(shù)下降。然而,通道不會(huì)隨著柵極電壓的降低而突然關(guān)閉,而是以每十倍電流下降約 110 mV 的固定速率下降。
ALD1148xx/ALD1149xx 產(chǎn)品是耗盡型 EPAD MOSFET,當(dāng)柵極偏置電壓為 0.0V 時(shí),它們是常開器件。耗盡模式閾值電壓處于 MOSFET 器件關(guān)斷的負(fù)電壓。提供負(fù)閾值,例如 –0.40V、-1.30V 和 –3.50V。在沒有電源電壓且 Vgs = 0.0V 的情況下,這些 EPAD MOSFET 器件已經(jīng)開啟,并且在源極和漏極端子之間表現(xiàn)出受控的導(dǎo)通電阻。
尋求在電路設(shè)計(jì)中實(shí)現(xiàn)更低的工作電壓和更低的功耗水平是一種趨勢(shì),這給電氣工程師帶來了艱巨的挑戰(zhàn),因?yàn)樗麄冇龅搅嘶景雽?dǎo)體器件特性對(duì)他們施加的限制。長(zhǎng)期以來,工程師們一直將這些特性視為基本特性,并可能阻止他們最大限度地?cái)U(kuò)大可用電壓范圍,否則會(huì)使新電路取得成功。
所以,我想說這個(gè)概念是完全可擴(kuò)展的。因此,我們可以為低功率制作非常高的 RDS (on) 部件,或?yàn)楦吖β手谱鞣浅5偷?RDS (on) 部件。通過簡(jiǎn)單地重塑設(shè)計(jì),它可以擴(kuò)展到低電壓,但這個(gè)概念是成立的。這就是我們基本上認(rèn)為我們已經(jīng)實(shí)現(xiàn)了最初目標(biāo)的方式。
如今,無論生活亦或是工作環(huán)境中都充斥著大量不同頻率的電磁場(chǎng),各個(gè)電子、電氣設(shè)備在同一空間中同時(shí)工作時(shí),總會(huì)在它周圍產(chǎn)生一定強(qiáng)度的電磁場(chǎng),比如電視發(fā)射臺(tái)、固定或移動(dòng)式無線電發(fā)射臺(tái)以及各種工業(yè)輻射源產(chǎn)生的電磁場(chǎng)。
汽車電氣化正在興起,隨著世界各國(guó)政府試圖實(shí)現(xiàn)可持續(xù)發(fā)展目標(biāo),它可能會(huì)繼續(xù)增長(zhǎng)。本文摘錄了與恩智浦半導(dǎo)體執(zhí)行副總裁兼高級(jí)模擬業(yè)務(wù)線總經(jīng)理 Jens Hinrichsen 就汽車電氣化的各個(gè)方面的對(duì)話——從技術(shù)方面,包括電池管理,到增長(zhǎng)的挑戰(zhàn),包括解決范圍焦慮等因素,這是一種常見的消費(fèi)者猶豫。
我們?nèi)绾慰创磥韼啄甑?GaN?與 GaN 競(jìng)爭(zhēng)的其他寬帶隙材料有哪些?所以,我提到了碳化硅。因此,這些天來,我們也在談?wù)撾妱?dòng)汽車。那么,與其他解決方案相比,GaN 在哪些方面可以提供更好的價(jià)值呢?我們期望在哪里看到下一波增長(zhǎng)?
功率半導(dǎo)體的第二次革命五年后,基于氮化鎵 (GaN)的移動(dòng)快速充電器主宰了旗艦智能手機(jī)和筆記本電腦型號(hào),從傳統(tǒng)功率硅芯片中搶占了市場(chǎng)份額。這種下一代“寬帶隙”技術(shù)正在逐步進(jìn)入主流移動(dòng)應(yīng)用程序,同時(shí)從該灘頭市場(chǎng)突圍,進(jìn)入更高功率的消費(fèi)者、太陽能、數(shù)據(jù)中心和電動(dòng)汽車。一個(gè)新的電源平臺(tái)——集成的、功能豐富的、高效的 GaNSense?“半橋”——是高功率、高速應(yīng)用的基本組成部分,其中 GaN 不僅提供更小、更快速的充電和降低系統(tǒng)成本的應(yīng)用,而且還可以節(jié)省大約 2.6 Gtons CO 2/年到 2050 。
車輛電氣化是減少道路交通溫室氣體排放計(jì)劃的關(guān)鍵部分。與傳統(tǒng)的硅替代品相比,寬帶隙半導(dǎo)體具有多種優(yōu)勢(shì),因此可以改進(jìn)電動(dòng)汽車和混合動(dòng)力汽車。在這個(gè)與 FTEX 的聯(lián)合創(chuàng)始人兼首席技術(shù)官 Alexandre Cosneau 的討論中,我們將發(fā)現(xiàn)電動(dòng)汽車的動(dòng)力總成技術(shù)和 GaN 的優(yōu)勢(shì)。Cosneau 正在尋找優(yōu)化電源轉(zhuǎn)換的方法,從電池設(shè)計(jì)到電機(jī)效率,這對(duì) FTEX 技術(shù)和解決方案至關(guān)重要。
金屬氧化物半導(dǎo)體場(chǎng)效應(yīng)晶體管(MOSFET)是一種電壓控制器件,由源極、漏極、柵極和主體等端子構(gòu)成,用于放大或切換電路內(nèi)的電壓,也廣泛用于數(shù)字應(yīng)用的 IC。此外,也用于放大器和濾波器等模擬電路。MOSFET的設(shè)計(jì)主要是為了克服FET的缺點(diǎn),例如高漏極電阻、中等輸入阻抗和運(yùn)行緩慢。MOSFET有增強(qiáng)型和耗盡型兩種。本文主要介紹耗盡型MOSFET,以及它的使用場(chǎng)景。
眾所周知,當(dāng) V GS 在增強(qiáng)模式下為正時(shí),N 型耗盡型 MOSFET 的行為類似于 N 型增強(qiáng)型 MOSFET;兩者之間的唯一區(qū)別是 V GS = 0V時(shí)的漏電流 I DSS量。增強(qiáng)型 MOSFET 在柵極未通電時(shí)不應(yīng)泄漏任何電流,因此當(dāng) V GS = 0V 時(shí) I DSS必須 為 0,但當(dāng) V GS = 0V 時(shí)允許 I DSS電流流過耗盡型 MOSFET 的傳導(dǎo)通道 。
傳統(tǒng)上,耗盡型 MOSFET 被歸類為線性器件,因?yàn)樵礃O和漏極之間的傳導(dǎo)通道無法被夾斷,因此不適合數(shù)字開關(guān)。這種誤解的種子是由 Dawon Kahng 博士播下的,他在 1959 年發(fā)明了第一個(gè)耗盡型 MOSFET——只有三個(gè)端子當(dāng)柵極控制電壓在電源和地之間變化時(shí),柵極的三端耗盡型 MOSFET 的溝道。Dr. Kahng 的耗盡型 MOSFET 只能用作可變電阻或同相線性緩沖器。從那時(shí)起,耗盡型 MOSFET 一直被用作三端線性器件。
includebrf
單曲循環(huán)lk
18713271819cxy
rainbow9527
王洪陽
yifeidengdai
yangjie123456
zrddyhm
xyhaliyou
bestec0311
GUXIUQI
liqundianzi
enyvking
13827430715
Powerxys
gaojian19961214
W1320736
adaminjie
SIASGUOJIe
bulusii
風(fēng)凌天
簡(jiǎn)直celia
965626362
魁北克之眼
w541164212
fundwy2
漂流大帥哥
changtingyimeng
DYQ26
劉劍君