www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當(dāng)前位置:首頁 > 電源 > 電源
[導(dǎo)讀]針對主-從均流法的調(diào)節(jié)特點(diǎn),在經(jīng)典PI均流控制器的基礎(chǔ)上引入模糊PID控制,可以顯著改善系統(tǒng)動(dòng)態(tài)特性,表現(xiàn)出強(qiáng)魯棒性。實(shí)驗(yàn)結(jié)果也進(jìn)一步證明了該控制策略的正確性和先進(jìn)性。

摘要:針對主-從均流法的調(diào)節(jié)特點(diǎn),在經(jīng)典PI均流控制器的基礎(chǔ)上引入模糊PID控制,可以顯著改善系統(tǒng)動(dòng)態(tài)特性,表現(xiàn)出強(qiáng)魯棒性。實(shí)驗(yàn)結(jié)果也進(jìn)一步證明了該控制策略的正確性和先進(jìn)性。
關(guān)鍵詞:電源;并聯(lián);均流;模糊控制

    眾所周知,并聯(lián)技術(shù)已成為實(shí)現(xiàn)大功率分布式電源系統(tǒng)的核心技術(shù)[1],但由于各并聯(lián)電源模塊特性并不完全一致,輸出電壓高的模塊可能承擔(dān)更多負(fù)載,而有的模塊則可能輕載、甚至空載運(yùn)行,結(jié)果導(dǎo)致分擔(dān)電流多的模塊熱應(yīng)力大,降低了電源整體的工作可靠性。隨著電子系統(tǒng)的發(fā)展,對電源可靠性、效率和功率密度的要求越來越高,因此有必要采取一種有效的均流控制方案,保證整個(gè)電源系統(tǒng)的輸出電流按各個(gè)單元模塊的輸出能力均攤,這樣既能充分發(fā)揮單元電源模塊的輸出能力,又能保證每個(gè)單元電源的工作可靠性。

    目前已有大量文獻(xiàn)介紹并聯(lián)電源系統(tǒng)的均流技術(shù),雖然其原理不盡相同,但控制器的設(shè)計(jì)都是在電源模塊簡化、近似的數(shù)學(xué)模型基礎(chǔ)上進(jìn)行??紤]到大功率器件及其電源模塊的非線性特性,基于古典反饋控制的均流措施不可能取得滿意的控制效果。隨著計(jì)算機(jī)技術(shù)的迅速發(fā)展,復(fù)雜參量和系統(tǒng)的狀態(tài)實(shí)時(shí)計(jì)算、估計(jì)已成為現(xiàn)實(shí),自適應(yīng)控制、滑模變結(jié)構(gòu)控制等現(xiàn)代控制理論以及模糊控制、神經(jīng)網(wǎng)絡(luò)等智能控制方法都已應(yīng)用于電力電子系統(tǒng)[2]。因此,在設(shè)計(jì)高精度、高穩(wěn)定性電源時(shí)使用先進(jìn)的控制策略論將更具吸引力和實(shí)用價(jià)值。本文將模糊控制與常規(guī)PID控制相結(jié)合,并采用積分前饋控制,構(gòu)成智能均流控制器,試驗(yàn)波形表明電源系統(tǒng)的動(dòng)、靜態(tài)性能得到了顯著提高。

并聯(lián)DC/DC模塊的主-從均流法

工作原理

    如圖1a所示,在主從控制方式下的N個(gè)模塊中#1模塊作為主模塊(master),工作在電壓源(VS)方式(圖1b),其余N-1個(gè)模塊作為從模塊(slave),工作在電流源(CS)方式(圖1c)。Vr1是主模塊的電流基準(zhǔn)值,作為PWM控制器的控制電壓;從模塊的PWM控制器由主模塊與從模塊輸出電流的偏差電壓即電流負(fù)反饋來調(diào)節(jié),CSC是均流控制器。由于從模塊電流均按主模塊電流進(jìn)行調(diào)節(jié),其輸出電流與主模塊電流基本一致,從而實(shí)現(xiàn)均流。因此,該系統(tǒng)實(shí)際上是一個(gè)由電壓外環(huán)和電流內(nèi)環(huán)構(gòu)成的雙閉環(huán)控制系統(tǒng)。


    圖1 并聯(lián)電源模塊的主-從均流法工作原理圖

     主要特點(diǎn)
     雙閉環(huán)主-從均流控制技術(shù)主要有以下特點(diǎn):
     (1)每個(gè)電源模塊的輸出電流能夠自動(dòng)按功率份額均攤,實(shí)現(xiàn)均流;
     (2)當(dāng)輸入電壓或/和負(fù)載電流變化時(shí),能保持輸出電壓穩(wěn)定,并且均流瞬態(tài)響應(yīng)好;
     (3)由于主從模塊間需要通訊聯(lián)系,所以整個(gè)系統(tǒng)較為復(fù)雜。

PID均流控制器(CSC)設(shè)計(jì)
    雖然文獻(xiàn)[3]提出的PI均流控制器在DC/DC模塊電源并聯(lián)系統(tǒng)中獲得了較高的均流精度,但動(dòng)態(tài)性能尚無法    滿足電源在負(fù)載變化或電網(wǎng)波動(dòng)過程中的快速性要求。為改善動(dòng)態(tài)特性,在PI調(diào)節(jié)器的基礎(chǔ)上引入微分環(huán)節(jié),構(gòu)成PID控制器。這里以降壓型(BUCK)DC/DC電源模塊為例,進(jìn)行具體說明。模塊參數(shù):輸入電壓15V,輸出電壓5V,輸出電流15A。系統(tǒng)采用三模塊并聯(lián)的MSC拓?fù)?,電源總輸出電流?5A。若均流控制器(CSC)采用圖2所示的PI控制器,選擇其帶寬BW=28kHz,相位裕量pM=48°,幅值裕量GM=15dB,則其傳遞函數(shù)及參數(shù):


    圖2 模糊均流控制器結(jié)構(gòu)圖

其中:

    在PI控制器的基礎(chǔ)上引入微分環(huán)節(jié),增加低頻段零點(diǎn),從而在保證充分相位裕量的前提下,增加系統(tǒng)帶寬。為提高系統(tǒng)快速性,將PID調(diào)節(jié)器的帶寬由28kHz提高到100kHz,相位裕量不變,幅值裕量為無窮大,則PID控制器的傳遞函數(shù)為:

    其中:kp=20,ki=1,kd=0.1,傳遞函數(shù)中包括Z1=0.05s-1、Z2=300×103s-1兩個(gè)零點(diǎn)和附加微分環(huán)節(jié)的高頻極點(diǎn)p=-ωp,ωp值由式(1)決定。值得注意的是,雖然電源系統(tǒng)的響應(yīng)速度有了顯著提高,但是帶寬的增加使系統(tǒng)抑制輸入信號高頻噪聲的能力大大下降。因此帶寬的選擇應(yīng)當(dāng)是在電源系統(tǒng)具體的應(yīng)用背景下具體分析,盡量在系統(tǒng)快速性和抗擾性之間取得平衡。

FUZZY-PID均流控制器設(shè)計(jì)
    由于并聯(lián)電源系統(tǒng)的強(qiáng)耦合、非線性特性,其均流控制器的PID參數(shù)整定非常困難甚至根本無法整定,很難在工程上找到同時(shí)滿足穩(wěn)定性和動(dòng)態(tài)性能要求的解決方案。因此,借助于智能控制不依賴被控對象精確數(shù)學(xué)模型的特點(diǎn),本文介紹一種新型智能均流控制器設(shè)計(jì)方案,在PID調(diào)節(jié)器中引入模糊控制,在實(shí)現(xiàn)并聯(lián)模塊均流的同時(shí),進(jìn)一步提高系統(tǒng)的動(dòng)靜態(tài)性能指標(biāo)。

均流控制器結(jié)構(gòu)
    基于FUZZY-PID控制的CSC結(jié)構(gòu)(圖2)采用二維模糊控制器結(jié)構(gòu),以均流誤差e和誤差變化e作為輸入量,u為輸出控制量。此時(shí),模糊控制器的控制量成為電流誤差和誤差變化的非線性函數(shù),它具有類似PD調(diào)節(jié)器的控制效果,系統(tǒng)動(dòng)態(tài)特性有所改善,而靜態(tài)性能并不令人滿意,系統(tǒng)無法完全消除穩(wěn)態(tài)誤差;再加之模糊控制固有的死區(qū)現(xiàn)象,使穩(wěn)態(tài)誤差進(jìn)一步擴(kuò)大。另外,在模糊變量分級不夠多的情況下,常常在平衡點(diǎn)附近有振蕩現(xiàn)象。為克服這些問題,系統(tǒng)又引入誤差信號的積分分離、前饋控制算法,以消除穩(wěn)態(tài)誤差。

模糊控制器設(shè)計(jì)
    通常模糊控制規(guī)則由總結(jié)實(shí)際操作經(jīng)驗(yàn)而得來,但對于并聯(lián)電源系統(tǒng)這種特定對象,要總結(jié)人工控制經(jīng)驗(yàn)比較困難,因此本設(shè)計(jì)考慮將上述經(jīng)典PID控制策略模糊化,得到所需控制規(guī)則。

    定義輸入量e和e的模糊集為:{負(fù)(N)、零(Z)、正(P)},控制量u的模糊集為{負(fù)大(NB)、負(fù)小(NS)、零(Z)、正小(PS)、正大(PB)},對應(yīng)隸屬函數(shù)均為三角型(圖3)。基于式(2)PID專家知識的模糊變量賦值按以下過程建立:因PID調(diào)節(jié)器的比例與微分系數(shù)之比kp/kd=200,若e的變化范圍是[-1,1],則可以確定e的變化范圍是[-200,200]。如果e是負(fù)(-1),且e也是負(fù)(-200),那么基于PID的模糊推理結(jié)果即控制量u約是-40,也就是說u值論域中的負(fù)大(NB)對應(yīng)于-40。依此類推,可獲得其余推理結(jié)果,模糊控制表如表1所示。


    圖3 隸屬函數(shù)


    表1 模糊控制規(guī)則表

實(shí)驗(yàn)與結(jié)論
    這里就三個(gè)BUCKDC/DC電源模塊并聯(lián)系統(tǒng)進(jìn)行仿真實(shí)驗(yàn)研究。圖4a和圖4b分別是70%負(fù)載條件下CSC采用PID調(diào)節(jié)器和FUZZY-PID調(diào)節(jié)器時(shí)系統(tǒng)的階躍響應(yīng)波形,從中可以看出:


    
    圖4a 并聯(lián)電源系統(tǒng)階躍響應(yīng)圖

    (1)基于FUZZY-PID均流調(diào)節(jié)器的電源系統(tǒng)中各模塊電流波形幾乎完全一致,而在PID調(diào)節(jié)作用下各模塊電流波形差別較大,這說明FUZZY-PID控制的穩(wěn)定性好,穩(wěn)態(tài)精度高,動(dòng)態(tài)響應(yīng)快且無超調(diào)。

系統(tǒng)主電路
    逆變主電路為交-直-交電壓型,整流側(cè)為單相二極管不可控型。這種方式不僅控制簡單,而且系統(tǒng)具有較高的功率因數(shù)。為減小裝置體積,減少諧波,提高電流波形質(zhì)量。逆變功率元件采用高開關(guān)頻率的三菱電機(jī)公司第三代智能功率模塊PM20CSJ060。該模塊為六合一封裝,內(nèi)部為三相橋式電路結(jié)構(gòu),內(nèi)部集成了高速、低功耗的IGBT芯片及其驅(qū)動(dòng)、保護(hù)電路。此外,該模塊還集成了過熱和欠壓鎖定保護(hù)電路,使得系統(tǒng)的可靠性得到進(jìn)一步提高[4]??刂齐娐飞系腖F2407芯片輸出的六路空間矢量信號SVPWM經(jīng)光耦6N136實(shí)現(xiàn)對IPM隔離驅(qū)動(dòng),再將整流濾波后的直流電壓逆變?yōu)樗璧母哳l交流電驅(qū)動(dòng)永磁空調(diào)壓縮機(jī)。

    系統(tǒng)中還有電流檢測電路,采用霍爾電流傳感器檢測永磁電機(jī)A、C兩相,再利用采樣電阻和多級運(yùn)放將電流信號處理為在0~5V間變化的模擬電壓信號,與集成在LF2407內(nèi)的A/D轉(zhuǎn)換器外引腳相連接。由于無位置傳感器技術(shù)無法知道轉(zhuǎn)子的初始位置,永磁電機(jī)也只有在起動(dòng)后才能工作在無位置傳感器狀態(tài)下,所以用光電式旋轉(zhuǎn)編碼器來實(shí)現(xiàn)轉(zhuǎn)子初始位置的檢測。其它的保護(hù)電路由LF2407的事件管理器來實(shí)現(xiàn),一旦系統(tǒng)出現(xiàn)故障,片內(nèi)固化的中斷程序?qū)⒆詣?dòng)切斷系統(tǒng)的SVPWM輸出,直到故障消失和系統(tǒng)復(fù)位。

系統(tǒng)軟件設(shè)計(jì)

    本文研究的永磁空調(diào)系統(tǒng)控制軟件全部由LF2407完成,主要是完成空間磁場定向控制,產(chǎn)生SVPWM信號??刂栖浖ǔ跏蓟绦颉⒅鞒绦蚝椭袛喾?wù)子程序三個(gè)部分。系統(tǒng)在每次復(fù)位后,首先執(zhí)行初始化程序,完成DSP內(nèi)部設(shè)定和初始狀態(tài)的檢測,然后開啟中斷,執(zhí)行主程序。一旦外部中斷條件滿足時(shí),系統(tǒng)執(zhí)行中斷服務(wù)子程序,直到系統(tǒng)重新復(fù)位。圖4b為SVPWM中斷服務(wù)子程序框圖。


    
    圖4b SVPWM中斷子程序流程圖

結(jié)論

    本文根據(jù)永磁同步電動(dòng)機(jī)矢量控制原理和變頻空調(diào)器的要求,開發(fā)了一套基于DSP的全新變頻空調(diào)控制系統(tǒng)。利用LF2407的六個(gè)PWM全比較器產(chǎn)生的SVPWM控制信號就可以實(shí)現(xiàn)對永磁同步電動(dòng)機(jī)的變頻控制。該空調(diào)控制系統(tǒng)充分利用了LF2407的超強(qiáng)實(shí)時(shí)計(jì)算能力和一些集成器件,使整個(gè)系統(tǒng)結(jié)構(gòu)簡單、產(chǎn)品開發(fā)周期短、可靠性強(qiáng)。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動(dòng)電源

在工業(yè)自動(dòng)化蓬勃發(fā)展的當(dāng)下,工業(yè)電機(jī)作為核心動(dòng)力設(shè)備,其驅(qū)動(dòng)電源的性能直接關(guān)系到整個(gè)系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動(dòng)勢抑制與過流保護(hù)是驅(qū)動(dòng)電源設(shè)計(jì)中至關(guān)重要的兩個(gè)環(huán)節(jié),集成化方案的設(shè)計(jì)成為提升電機(jī)驅(qū)動(dòng)性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機(jī) 驅(qū)動(dòng)電源

LED 驅(qū)動(dòng)電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個(gè)照明設(shè)備的使用壽命。然而,在實(shí)際應(yīng)用中,LED 驅(qū)動(dòng)電源易損壞的問題卻十分常見,不僅增加了維護(hù)成本,還影響了用戶體驗(yàn)。要解決這一問題,需從設(shè)計(jì)、生...

關(guān)鍵字: 驅(qū)動(dòng)電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動(dòng)電源的公式,電感內(nèi)電流波動(dòng)大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計(jì) 驅(qū)動(dòng)電源

電動(dòng)汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動(dòng)汽車的核心技術(shù)之一是電機(jī)驅(qū)動(dòng)控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機(jī)驅(qū)動(dòng)系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動(dòng)汽車的動(dòng)力性能和...

關(guān)鍵字: 電動(dòng)汽車 新能源 驅(qū)動(dòng)電源

在現(xiàn)代城市建設(shè)中,街道及停車場照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進(jìn)步,高亮度白光發(fā)光二極管(LED)因其獨(dú)特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動(dòng)電源 LED

LED通用照明設(shè)計(jì)工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動(dòng)電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動(dòng)電源的電磁干擾(EMI)問題成為了一個(gè)不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動(dòng)電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機(jī)重量也有所下降,所以,現(xiàn)在的LED驅(qū)動(dòng)電源

關(guān)鍵字: LED 驅(qū)動(dòng)電源 開關(guān)電源

LED驅(qū)動(dòng)電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動(dòng)LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動(dòng)電源
關(guān)閉