www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當前位置:首頁 > 電源 > 數(shù)字電源
[導讀]本文論述一種自主產生式的雷達回波模擬器中頻部分的設計實現(xiàn)方法,該模擬器可產生脈沖單頻、脈沖線性調頻、步進頻、步進頻+線性調頻等多種波形的雷達回波信號,并可產生雙目標和參數(shù)可控的帶限高斯白噪聲,可模擬主要

本文論述一種自主產生式的雷達回波模擬器中頻部分的設計實現(xiàn)方法,該模擬器可產生脈沖單頻、脈沖線性調頻、步進頻、步進頻+線性調頻等多種波形的雷達回波信號,并可產生雙目標和參數(shù)可控的帶限高斯白噪聲,可模擬主要的干擾類型;輸出信號既可以直接用于信號處理機的中頻注入式測試,也可上變頻后用于雷達系統(tǒng)的射頻條件下的各種測試驗證。以下對該中頻雷達回波模擬器的實現(xiàn)方法予以詳細闡述。

  1 回波信號理論分析

  按照設計要求,該模擬器需要模擬脈沖單頻、脈沖線性調頻、步進頻、步進頻+線性調頻共四種波形的信號。其中,步進頻又包括順序步進頻和隨機步進頻兩種類型。這些波形的雷達回波信號,均可以統(tǒng)一表示為式(1)的形式:

  

 

  式中:c為光速;N為相參幀的脈沖總個數(shù);i表示相參幀內的第幾個脈沖;To為脈沖寬度;Tr為脈沖周期;fc為相參幀內首脈沖的載頻;△f為脈沖間最小步進頻差;bi△f為第i個脈沖在初始載頻基礎上的頻率變化(僅適用于脈間頻率捷變波形,非脈間捷變波形則bi=0);k為線性調頻波形時的脈內調頻變化率(非脈內線性調頻則k=0);Ro為目標當前距離;v為目標當前速度。

  由以上分析可知,無論上述何種波形,均可根據(jù)式(1)計算脈沖的延時、每個脈沖的脈內初相、以及每個脈沖的載頻等參數(shù),并對這些參數(shù)在與產品同步的基礎上予以實時控制來進行模擬實現(xiàn)。根據(jù)發(fā)射波形,還要決定是否添加脈內頻率線性調制。

  2 回波模擬器系統(tǒng)設計

  根據(jù)系統(tǒng)需求和前述雷達回波信號理論分析,該中頻雷達回波模擬器(以下簡稱模擬器)采用了如圖1所示的系統(tǒng)實現(xiàn)方案。

  

 

  該模擬器通過單片機(AVR8515)與上位機進行異步串行通信,單片機完成通信協(xié)議的解包、打包等過程,接收上位機中用戶設定的目標和干擾參數(shù),發(fā)送模擬器的實時模擬狀態(tài)信息給上位機。系統(tǒng)以DSP(ADSP-21060)作為脈沖參數(shù)的實時計算單元,單片機與DSP問通過雙口RAM進行信息交換。DSP得到兩個目標的模擬參數(shù)后,根據(jù)參數(shù)變化的時間節(jié)拍,計算一個相參幀兩目標的各脈沖的初相、載頻、脈沖延時等參數(shù),并寫給雙口RAM。系統(tǒng)以FPGA(XC2V3000)作為信號處理與控制單元,F(xiàn)PGA讀取后,在產品提供的處理幀同步信號和同步調制脈沖控制下,結合產品串口傳過來的波形類型的信息(如:脈內單頻還是線性調頻),形成兩個目標的延時脈沖,并控制兩個目標各自的DDS(AD9858)信號產生單元,產生出兩個目標信號。帶限的高斯白噪聲的數(shù)字正交基帶也由FPGA產生,并同步AD9957的數(shù)字正交上變頻功能將基帶調制到所需的中心頻上。目標1、目標2和噪聲信號的合成由模擬電路實現(xiàn),并實現(xiàn)一定的功率控制,最后輸出所需的中頻雷達回波信號。模擬器系統(tǒng)各單元時鐘的相參性至關重要,由專用時鐘管理芯片(AD9510)產生FPGA,AD9858,AD9957的工作時鐘。

   [!--empirenews.page--]3 關鍵模塊設計

 

  3.1 數(shù)字延時模塊

  對于脈沖的數(shù)字延遲的實現(xiàn),方法1是將DSP計算得到的延時時鐘個數(shù)值D,轉換為N位的二進制碼,利用二進制碼進行控制。可采用如圖2基于寄存器的方法實現(xiàn),這種方法優(yōu)點是沒有固定延遲,最小可實現(xiàn)零延遲。但當N增大時,此法耗費的FPGA觸發(fā)器資源呈幾何級數(shù)增加,因此,不適用于需要實現(xiàn)很大延時的場合。

  

 

  方法2是采用如圖3所示的存儲轉發(fā)的方式,具體是:將輸入的待延時脈沖,用延時時鐘采樣后,以左端口地址A在每個延時時鐘周期遞增加1寫入單bit的雙口RAM中,右端口以地址B在每個延時時鐘周期遞增加1進行按序讀取,左右端口操作到(2N+1-1)的上限地址后自動返回0地址繼續(xù)各自遞增操作。地址A和地址B滿足:B=A—D。D為需要的延時時鐘個數(shù)值。當A

  

 

  方法2避免了大延時情況下觸發(fā)器資源過度耗費,但存在固定延時,另當延時時鐘頻率很高時,雙口RAM的讀寫速度難以滿足要求。因此,本系統(tǒng)在實踐中對方法2進行了改進設計,如圖4所示。

  

 

  本設計將待延時的脈沖經(jīng)延時時鐘采樣后,經(jīng)串并轉換形成16 b的數(shù)據(jù),每16個延時時鐘完成一次串/并轉換,并輸出一個16 b寬度的雙口RAM的左端口寫時鐘,地址A仍按序累加。將地址A末位補上四個“1”構成寬地址x;x—D=Y(補碼形式);式中:D為DSP計算的延時時鐘個數(shù)值。將Y(二進制)的低四位提取出來作為碼值C;其余高位構成圖中雙端口RAM的右端口讀地址。其讀時鐘由圖右的并/串轉換單元每16個延時時鐘周期輸出一個脈沖;并/串轉換單元將讀出的16位數(shù)據(jù)轉換恢復為脈沖,經(jīng)過如圖1寄存器方式實現(xiàn)的4位寄存器延時環(huán)節(jié)(控制碼為碼值C)延時后,輸出延時后的脈沖。

  該方法將雙口的讀寫時鐘降速到延時時鐘的16分頻,大大降低了雙口RAM的速度壓力,更易于實現(xiàn)。另16 b的雙口RAM也可借助片外雙口RAM實現(xiàn),降低對FPGA存儲資源的依賴。該方法的缺點是有更大的固定延遲,雖在延時大時可預先由DSP修正控制值,但對要求延時小于其固定延時的情況則無法適用。本系統(tǒng)綜合采用兩種方法解決,即:DSP輸出碼值的最高位決定延時方法的切換,當需求的延時大于固定延時時則采用圖4的方法;而需求的延時小于固定延時時采用圖2的寄存器法。

  3.2 數(shù)字噪聲基帶產生模塊

  本系統(tǒng)噪聲基帶信號的產生采用數(shù)字技術,在FPGA內完成,實現(xiàn)方法如圖5所示。

  

 

  根據(jù)隨機信號理論,對均勻分布的隨機數(shù)進行白化處理,可實現(xiàn)具有良好統(tǒng)計特性的高斯白噪聲。系統(tǒng)首先采用2個獨立的m序列發(fā)生器產生[0,1]區(qū)間上均勻分布的偽隨機數(shù),m序列發(fā)生器的硬件結構如圖6所示,其中Co和Cn為對應m序列多項式的系數(shù),取值為0和1。

  然后將產生的一對偽隨機數(shù)通過Box_Muller變換可以得到一對相互獨立的符合標準正態(tài)分布的偽隨機數(shù)m和n,正好作為噪聲產生器的同相分量和正交分量。Box_Muller變換公式為:

  

 

  式中:x,y即為前述2個互相獨立的在(0,1)上均勻分布的偽隨機數(shù)。

  由于Box_Muller變換需要用到兩個非線性函數(shù),而非線性運算很難在實際數(shù)字電路系統(tǒng)中實現(xiàn),故實際中需要構建相應查找表實現(xiàn)非線性運算,分別記作sqrt_lut和sincos_lut。設sqrt_lut和sincos_Iut的輸出量化數(shù)據(jù)長度為L1和L2位,獨立變量m和n的定點長度分別為N1和N2位。則當采用均勻量化方案時,sqrt_lut和sincos_lut所需的存儲空間分別為2N1×L1和2N2×L2??梢钥闯?,如果直接實現(xiàn)查找表功能,當N1和N2較大時,對應的存儲空間是相當可觀的。

  為了壓縮存儲空間,對sincos_lut,可以只存儲第一象限的正余弦值。其他象限則通過符號調整得到,這樣可以將sincos_lut占用存儲空間減少到原來的1/4。更進一步,還可以對非線性曲線進行分段折線近似,在實際查找表中只存儲各折線段的起始位置及對應斜率。也可以大幅度減少所需查找表的數(shù)量,該策略同樣適用于sqrt_lut查找表。

  得到一對相互獨立的符合標準正態(tài)分布變量m和n后,還要對其進行低通濾波,以適應對應的信號帶寬。由于I路與Q路的濾波特性完全相同,為進一步節(jié)省資源,可采用一個支持雙通道操作的濾波器同時完成I路與Q路的濾波。這可以通過ISE集成開發(fā)環(huán)境中Core Generator中的FIR IP核來方便實現(xiàn)。濾波器系統(tǒng)可由上位機根據(jù)所需帶寬,傳遞相應系數(shù)給DSP,繼而傳遞給FPGA。

  噪聲功率調整模塊可根據(jù)設定信噪比的不同,乘以相應系數(shù),對產生的帶限高斯白噪聲幅度進行調整。

  4 結論

  本系統(tǒng)基于自主產生的原理,選用DSPFPGA為核心處理器,通過合理的算法設計,實現(xiàn)了可兼容多種雷達波形的中頻雷達回波模擬器的設計,采用改進的基于存儲轉發(fā)的數(shù)字脈沖延時方法,在達到8 ns的最小延時步長的同時,降低了對系統(tǒng)的硬件要求。系統(tǒng)的另一個關鍵模塊是數(shù)字噪聲發(fā)生器,其參數(shù)可以進行實時修改,極大地提高了噪聲發(fā)生器的靈活性,與其他同類型設計相比,具有工作速度快,資源利用率高,硬件結構簡單等特點。最后采用DDS、數(shù)字正交上變頻等器件,實現(xiàn)了精確的復雜頻率調制、相位調制和幅度調制,保證了系統(tǒng)的靈活性、高兼容性和集成化程度。

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內容真實性等。需要轉載請聯(lián)系該專欄作者,如若文章內容侵犯您的權益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: 驅動電源

在工業(yè)自動化蓬勃發(fā)展的當下,工業(yè)電機作為核心動力設備,其驅動電源的性能直接關系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅動電源設計中至關重要的兩個環(huán)節(jié),集成化方案的設計成為提升電機驅動性能的關鍵。

關鍵字: 工業(yè)電機 驅動電源

LED 驅動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設備的使用壽命。然而,在實際應用中,LED 驅動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設計、生...

關鍵字: 驅動電源 照明系統(tǒng) 散熱

根據(jù)LED驅動電源的公式,電感內電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關鍵字: LED 設計 驅動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產業(yè)的重要發(fā)展方向。電動汽車的核心技術之一是電機驅動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅動系統(tǒng)中的關鍵元件,其性能直接影響到電動汽車的動力性能和...

關鍵字: 電動汽車 新能源 驅動電源

在現(xiàn)代城市建設中,街道及停車場照明作為基礎設施的重要組成部分,其質量和效率直接關系到城市的公共安全、居民生活質量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關鍵字: 發(fā)光二極管 驅動電源 LED

LED通用照明設計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關鍵字: LED 驅動電源 功率因數(shù)校正

在LED照明技術日益普及的今天,LED驅動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關鍵字: LED照明技術 電磁干擾 驅動電源

開關電源具有效率高的特性,而且開關電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現(xiàn)在的LED驅動電源

關鍵字: LED 驅動電源 開關電源

LED驅動電源是把電源供應轉換為特定的電壓電流以驅動LED發(fā)光的電壓轉換器,通常情況下:LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: LED 隧道燈 驅動電源
關閉