www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當前位置:首頁 > 電源 > 數(shù)字電源
[導讀]憑借出色的性能和功耗指標,賽靈思 FPGA 成為設計人員構(gòu)建卷積神經(jīng)網(wǎng)絡的首選 XE "" XE "" XE "" XE ""。新的軟件工具可簡化實現(xiàn)工作。人工智能正在經(jīng)歷一場變革,這要得益

憑借出色的性能和功耗指標,賽靈思 FPGA 成為設計人員構(gòu)建卷積神經(jīng)網(wǎng)絡的首選 XE "" XE "" XE "" XE ""。新的軟件工具可簡化實現(xiàn)工作。

人工智能正在經(jīng)歷一場變革,這要得益于機器學習的快速進步。在機器學習領(lǐng)域,人們正對一類名為“深度學習”算法產(chǎn)生濃厚的興趣,因為這類算法具有出色的大數(shù)據(jù)集性能。在深度學習中,機器可以在監(jiān)督或不受監(jiān)督的方式下從大量數(shù)據(jù)中學習一項任務。大規(guī)模監(jiān)督式學習已經(jīng)在圖像識別和語音識別等任務中取得巨大成功。

深度學習技術(shù)使用大量已知數(shù)據(jù)找到一組權(quán)重和偏差值,以匹配預期結(jié)果。這個過程被稱為訓練,并會產(chǎn)生大型模式。這激勵工程師傾向于利用專用硬件(例如 GPU)進行訓練和分類。

隨著數(shù)據(jù)量的進一步增加,機器學習將轉(zhuǎn)移到云。大型機器學習模式實現(xiàn)在云端的 CPU 上。盡管 GPU 對深度學習算法而言在性能方面是一種更好的選擇,但功耗要求之高使其只能用于高性能計算集群。因此,亟需一種能夠加速算法又不會顯著增加功耗的處理平臺。在這樣的背景下,F(xiàn)PGA 似乎是一種理想的選擇,其固有特性有助于在低功耗條件下輕松啟動眾多并行過程。

讓我們來詳細了解一下如何在賽靈思 FPGA 上實現(xiàn)卷積神經(jīng)網(wǎng)絡 (CNN)。CNN 是一類深度神經(jīng)網(wǎng)絡,在處理大規(guī)模圖像識別任務以及與機器學習類似的其他問題方面已大獲成功。在當前案例中,針對在 FPGA 上實現(xiàn) CNN 做一個可行性研究,看一下 FPGA 是否適用于解決大規(guī)模機器學習問題。

卷積神經(jīng)網(wǎng)絡是一種深度神經(jīng)網(wǎng)絡 (DNN),工程師最近開始將該技術(shù)用于各種識別任務。圖像識別、語音識別和自然語言處理是 CNN 比較常見的幾大應用。

什么是卷積神經(jīng)網(wǎng)絡?

卷積神經(jīng)網(wǎng)絡是一種深度神經(jīng)網(wǎng)絡 (DNN),工程師最近開始將該技術(shù)用于各種識別任務。圖像識別、語音識別和自然語言處理是 CNN 比較常見的幾大應用。

2012 年,Alex Krishevsky 與來自多倫多大學 (University of Toronto) 的其他研究人員 [1] 提出了一種基于 CNN 的深度架構(gòu),贏得了當年的“Imagenet 大規(guī)模視覺識別挑戰(zhàn)”獎。他們的模型與競爭對手以及之前幾年的模型相比在識別性能方面取得了實質(zhì)性的提升。自此,AlexNet 成為了所有圖像識別任務中的對比基準。

AlexNet 有五個卷積層和三個致密層(圖 1)。每個卷積層將一組輸入特征圖與一組權(quán)值濾波器進行卷積,得到一組輸出特征圖。致密層是完全相連的一層,其中的每個輸出均為所有輸入的函數(shù)。

卷積層

AlexNet 中的卷積層負責三大任務,如圖 2 所示:3D 卷積;使用校正線性單元 (ReLu) 實現(xiàn)激活函數(shù);子采樣(最大池化)。3D 卷積可用以下公式表示:

 

 

其中Y(m,x,y)是輸出特征圖m位置(x,y)處的卷積輸出,S是(x,y)周圍的局部鄰域,W是卷積濾波器組,X(n,x,y)是從輸入特征圖n上的像素位置(x,y)獲得的卷積運算的輸入。

 

 

圖 1 – AlexNet 是一種圖像識別基準,包含五個卷積層(藍框)和三個致密層(黃)。

 

 

圖 2 – AlexNet 中的卷積層執(zhí)行 3D 卷積、激活和子采樣。

所用的激活函數(shù)是一個校正線性單元,可執(zhí)行函數(shù)Max(x,0)。激活函數(shù)會在網(wǎng)絡的傳遞函數(shù)中引入非線性。最大池化是 AlexNet 中使用的子采樣技術(shù)。使用該技術(shù),只需選擇像素局部鄰域最大值傳播到下一層。

定義致密層

AlexNet 中的致密層相當于完全連接的層,其中每個輸入節(jié)點與每個輸出節(jié)點相連。AlexNet 中的第一個致密層有 9,216 個輸入節(jié)點。將這個向量乘以權(quán)值矩陣,以在 4,096 個輸出節(jié)點中產(chǎn)生輸出。在下一個致密層中,將這個 4,096 節(jié)點向量與另一個權(quán)值矩陣相乘得到 4,096 個輸出。最后,使用 4,096 個輸出通過 softmax regression 為 1,000 個類創(chuàng)建概率。

在 FPGA 上實現(xiàn) CNN

隨著新型高級設計環(huán)境的推出,軟件開發(fā)人員可以更方便地將其設計移植到賽靈思 FPGA 中。軟件開發(fā)人員可通過從 C/C++ 代碼調(diào)用函數(shù)來充分利用 FPGA 與生俱來的架構(gòu)優(yōu)勢。Auviz Systems 的庫(例如 AuvizDNN)可為用戶提供最佳函數(shù),以便其針對各種應用創(chuàng)建定制 CNN??稍谫愳`思 SD-Accel™ 這樣的設計環(huán)境中調(diào)用這些函數(shù),以在 FPGA 上啟動內(nèi)核。

最簡單的方法是以順序方式實現(xiàn)卷積和向量矩陣運算??紤]到所涉及計算量,因此順序計算會產(chǎn)生較大時延。

順序?qū)崿F(xiàn)產(chǎn)生很大時遲的主要原因在于 CNN 所涉及的計算的絕對數(shù)量。圖 3 顯示了 AlexNet 中每層的計算量和數(shù)據(jù)傳輸情況,以說明其復雜性。

 

 

圖 3 – 圖表展示了 AlexNet 中涉及的計算復雜性和數(shù)據(jù)傳輸數(shù)量。[!--empirenews.page--]

因此,很有必要采用并行計算。有很多方法可將實現(xiàn)過程并行化。圖 6 給出了其中一種。在這里,將 11x11 的權(quán)值矩陣與一個 11x11 的輸入特征圖并行求卷積,以產(chǎn)生一個輸出值。這個過程涉及 121 個并行的乘法-累加運算。根據(jù) FPGA 的可用資源,我們可以并行對 512 抑或 768 個值求卷積。

為了進一步提升吞吐量,我們可以將實現(xiàn)過程進行流水線化。流水線能為需要一個周期以上才能完成的運算實現(xiàn)更高的吞吐量,例如浮點數(shù)乘法和加法。通過流水線處理,第一個輸出的時延略有增加,但每個周期我們都可獲得一個輸出。

使用 AuvizDNN 在 FPGA 上實現(xiàn)的完整 CNN 就像從 C/C++ 程序中調(diào)用一連串函數(shù)。在建立對象和數(shù)據(jù)容器后,首先通過函數(shù)調(diào)用來創(chuàng)建每個卷積層,然后創(chuàng)建致密層,最后是創(chuàng)建 softmax 層,如圖 4 所示。

 

 

圖 4 - 實現(xiàn) CNN 時的函數(shù)調(diào)用順序。

 

 

圖 5 – 使用 AuvizDNN 創(chuàng)建 AlexNet 的 L1 的代碼片段。

 

 

圖 6 – AlexNets 的性能因 FPGA 類型不同而不同。

AuvizDNN 是 Auviz Systems 公司提供的一種函數(shù)庫,用于在 FPGA 上實現(xiàn) CNN。該函數(shù)庫提供輕松實現(xiàn) CNN 所需的所有對象、類和函數(shù)。用戶只需要提供所需的參數(shù)來創(chuàng)建不同的層。例如,圖 5 中的代碼片段顯示了如何創(chuàng)建 AlexNet 中的第一層。

AuvizDNN 提供配置函數(shù),用以創(chuàng)建 CNN 的任何類型和配置參數(shù)。AlexNet 僅用于演示說明。CNN 實現(xiàn)內(nèi)容作為完整比特流載入 FPGA 并從 C/C++ 程序中調(diào)用,這使開發(fā)人員無需運行實現(xiàn)軟件即可使用 AuvizDNN。

FPGA 具有大量的查找表 (LUT)、DSP 模塊和片上存儲器,因此是實現(xiàn)深度 CNN 的最佳選擇。在數(shù)據(jù)中心,單位功耗性能比原始性能更為重要。數(shù)據(jù)中心需要高性能,但功耗要在數(shù)據(jù)中心服務器要求限值之內(nèi)。

像賽靈思 Kintex® UltraScale™ 這樣的 FPGA 器件可提供高于 14 張圖像/秒/瓦特的性能,使其成為數(shù)據(jù)中心應用的理想選擇。圖 6 介紹了使用不同類型的 FPGA 所能實現(xiàn)的性能。

一切始于 c/c++

卷積神經(jīng)網(wǎng)絡備受青睞,并大規(guī)模部署用于處理圖像識別、自然語言處理等眾多任務。隨著 CNN 從高性能計算應用 (HPC) 向數(shù)據(jù)中心遷移,需要采用高效方法來實現(xiàn)它們。

FPGA 可高效實現(xiàn) CNN。FPGA 的具有出色的單位功耗性能,因此非常適用于數(shù)據(jù)中心。

AuvizDNN 函數(shù)庫可用來在 FPGA 上實現(xiàn) CNN。AuvizDNN 能降低 FPGA 的使用復雜性,并提供用戶可從其 C/C++ 程序中調(diào)用的簡單函數(shù),用以在 FPGA 上實現(xiàn)加速。使用 AuvizDNN 時,可在 AuvizDNN 庫中調(diào)用函數(shù),因此實現(xiàn) FPGA 加速與編寫 C/C++ 程序沒有太大區(qū)別。

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動電源

在工業(yè)自動化蓬勃發(fā)展的當下,工業(yè)電機作為核心動力設備,其驅(qū)動電源的性能直接關(guān)系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅(qū)動電源設計中至關(guān)重要的兩個環(huán)節(jié),集成化方案的設計成為提升電機驅(qū)動性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機 驅(qū)動電源

LED 驅(qū)動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設備的使用壽命。然而,在實際應用中,LED 驅(qū)動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設計、生...

關(guān)鍵字: 驅(qū)動電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動電源的公式,電感內(nèi)電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設計 驅(qū)動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動汽車的核心技術(shù)之一是電機驅(qū)動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅(qū)動系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動汽車的動力性能和...

關(guān)鍵字: 電動汽車 新能源 驅(qū)動電源

在現(xiàn)代城市建設中,街道及停車場照明作為基礎設施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動電源 LED

LED通用照明設計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現(xiàn)在的LED驅(qū)動電源

關(guān)鍵字: LED 驅(qū)動電源 開關(guān)電源

LED驅(qū)動電源是把電源供應轉(zhuǎn)換為特定的電壓電流以驅(qū)動LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動電源
關(guān)閉