www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當前位置:首頁 > 嵌入式 > 嵌入式硬件
[導讀]作者:電子科技大學 吳學璋 (Xuezhang Wu)AbstractThis report covers details about the design and part of the codes of the ultrasonic distance measurement and loc

作者:電子科技大學 吳學璋 (Xuezhang Wu)

Abstract

This report covers details about the design and part of the codes of the ultrasonic distance measurement and locating objects, which is part of a self-design robot project.

Distance detecting and bread pushing part

This part will discuss the distance test component, HCSR04 ultrasonic module, its application in our design and our working on bread push part.

1 Description of ultrasonic module HCSR04

The ultrasonic wave is used to measure the distance between the robot and the bread. By the reflecting the character of the ultrasonic wave, the distance between the ultrasonic module and the obstacle can be calculated by the formula

 

,

where L is the distance between bread and car, C is the speed of the ultrasonic wave in the air and T is the time difference of launching and receiving ultrasonic wave. However, error is inevitable by using this method because the robot is moving. When the module is working, the position of the car is not fixed. So, the measured time from the module is smaller than true time.

But in this experiment, the speed of the ultrasonic wave is much larger than the speed of the car thus the time between launching and receiving is so short that can be ignored.

In our design, the module chosen to launch and receive ultrasonic wave is HC-SR04. The picture of the module can be shown as below.

 

Figure 1.1. A picture of HCSR04 module

The module is IO trigger type. The triggering condition of the module is at least 10 microsecond high level signal. After being triggered, the module will launch eight 40 kHz square wave. When the module receive the back coming ultrasonic wave, it will get a continue high level as the output signal, the time for this high level is the time T mentioned in the last paragraph.

 

Figure 1.2. The time sequence of ultrasonic wave

The design processing picture is shown as below, the most important point should be mentioned is 30 ms in the processing. By the specification of the module, the minimum value of the triggering signal’s period is 60 ms. To avoid the next launching ultrasonic wave influences the echo of the last ultrasonic wave. The time between launching and receiving must smaller than 30 ms.

 

Figure 1.3. The diagram of he working logic of ultrasonic distance testing (display E means unable to measure the distance and shows error)

2 Bread locating procedure

This section will mainly describe how the bread is detected and pushed into the lake. At the beginning, our robot is moving along the fence which is facing the left side of the bread. The distance between the bread and the robot is measured by a ultrasonic equipment--HCSR04. The module emits a ultrasonic signal from the emitter. If the receiver can get the signal after some time, the distance can be measured through some mathematical method. As long as the distance is smaller than 20 cm, the robot will stop running ahead and turn left and moving straight ahead for one second, then it will turn right and moving straight ahead for one second, and then turn right and moving forward.

This means the robot changes its original position into the new position which is facing the front side of the bread. While the vehicle moving forward towards the bread, the ultrasonic equipment starts to measure a new distance between the bread and the vehicle. When the distance is smaller than 20cm, the vehicle will stop and the pushing rod will operate to push the bread into the lake and then it will moving backward. After this, the robot will turn left and finish the rest of the journey.

The code for ultrasonic distance measurement is shown below.

 

Figure 2.1. A screenshot of code fragment of ultrasonic distance measuring

One thing that should be mentioned is that the distance is set to 100 cm after the vehicle judges the distance is smaller than 20 cm. This is to disable the ultrasonic equipment so that the vehicle will not be disturbed by the environment during the turning. And we star the ultrasonic equipment again when the vehicle complete the turning.[!--empirenews.page--]

3 Design and mechanical structure of the push rod

This section will mainly describe the self-designed bread-pushing rod and its operating principle. The process about how the robot pushes the rod in order to throw the bread into the lake.

The rod will stop as soon as the distance between the rod and bread is less than 20 centimeters. The battery will supply the energy to the micro-controller. In this project, mbed is used to perform this function. The energy will make the gear motor rotate, when the gear is activated, it will push the rod ahead and the rod will push the bread forward. And finally after a certain time (we estimated the time that the bread can be pushed away) the motor will rotate in the opposite direction and take back the rod.

Then some details in the process will be discussed. First is about the energy supply. At the beginning, the battery supply the energy to the mbed, but it is not strong enough to drive the motor. So between the mbed and motor we added an inverter to connect them. If a low voltage is given to the input of the inverter, it will output a higher voltage which is strong enough to make the gear rotate. Then it’s about how to push the rod by rotating the gear. The motor will make the gear rotate in clockwise after it accepts the command from the mbed. Then it will push rod ahead until for a certain time and after that the gear will rotate in the opposite direction to take back the rod. Besides, we place a rack which is in series with the rod and its insections are completely matched to the gear.

In the mechanical part, two plastic splines with teeth and a small DC-motor with a 5V supply voltage are the main components used.

There are some basic requirements. The first is the whole bread-pushing part must be easy to control, which means it should be able to be controlled based on simple code instructions, and the structure shall not get stuck itself during the motion process. The second is the part must be firm and reliable, which will bring more flexibility for other parts to error while it doesn’t do so itself. The third is the part shall be modifiable to a certain extent, so that the structure could be fixed or adjusted due to real situations and demands.

 

Figure 3.1. Figure 3.2.

A graphic of the bread pushing rod Picture of the bread pushing rod

At first, including the final version, there are three main possible solutions, namely, splines and a motor, a mechanical arm, a simple-structured single-use slingshot-like module. However, the mechanical arm is a bit too big for the scale of the body of the car, and hard to be programmed at the same time. Meanwhile, the slingshot structure is resistless to physical impact and vibrations, which will possibly result in high rate of spurious triggering during the advance. Thus, at last, the splines and a motor is chosen as the solution, due to its simplicity of programming with only one motor.

For the assembling of the structure, the supportive parts are self-made, due to the incompatibility of the default module. In practice, the self-made structure is proved to be efficient and good enough to stretch out and draw back.

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: 驅動電源

在工業(yè)自動化蓬勃發(fā)展的當下,工業(yè)電機作為核心動力設備,其驅動電源的性能直接關系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅動電源設計中至關重要的兩個環(huán)節(jié),集成化方案的設計成為提升電機驅動性能的關鍵。

關鍵字: 工業(yè)電機 驅動電源

LED 驅動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設備的使用壽命。然而,在實際應用中,LED 驅動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設計、生...

關鍵字: 驅動電源 照明系統(tǒng) 散熱

根據(jù)LED驅動電源的公式,電感內(nèi)電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關鍵字: LED 設計 驅動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動汽車的核心技術之一是電機驅動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅動系統(tǒng)中的關鍵元件,其性能直接影響到電動汽車的動力性能和...

關鍵字: 電動汽車 新能源 驅動電源

在現(xiàn)代城市建設中,街道及停車場照明作為基礎設施的重要組成部分,其質量和效率直接關系到城市的公共安全、居民生活質量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關鍵字: 發(fā)光二極管 驅動電源 LED

LED通用照明設計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關鍵字: LED 驅動電源 功率因數(shù)校正

在LED照明技術日益普及的今天,LED驅動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關鍵字: LED照明技術 電磁干擾 驅動電源

開關電源具有效率高的特性,而且開關電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現(xiàn)在的LED驅動電源

關鍵字: LED 驅動電源 開關電源

LED驅動電源是把電源供應轉換為特定的電壓電流以驅動LED發(fā)光的電壓轉換器,通常情況下:LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: LED 隧道燈 驅動電源
關閉