www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當(dāng)前位置:首頁 > 嵌入式 > 嵌入式硬件
[導(dǎo)讀]提升小波變換不僅具有傳統(tǒng)小波多分辨率的優(yōu)點,而且簡化了運算,便于硬件實現(xiàn),因此在數(shù)字圖像編碼中得到廣泛應(yīng)用。在新的圖像壓縮標(biāo)準(zhǔn)JPEG2000中,采用9/7、5/3提升小波變換作為編碼算法,其中5/3

提升小波變換不僅具有傳統(tǒng)小波多分辨率的優(yōu)點,而且簡化了運算,便于硬件實現(xiàn),因此在數(shù)字圖像編碼中得到廣泛應(yīng)用。在新的圖像壓縮標(biāo)準(zhǔn)JPEG2000中,采用9/7、5/3提升小波變換作為編碼算法,其中5/3小波變換是一種可逆的整數(shù)變換,可以實現(xiàn)無損或有損的圖像壓縮。在通用的DSP芯片上實現(xiàn)該算法具有很好的可擴展性、可升級性與易維護性。用這種方式靈活性強,完全能滿足各種處理需求。
1 提升算法
提升算法[1]是由Sweldens等在Mallat算法的基礎(chǔ)上提出的,也稱為第二代小波變換。與Mallat算法相比,提升算法不依賴傅立葉變換,降低了計算量和復(fù)雜度,運行效率相應(yīng)提高。由于具有整數(shù)變換及耗費存儲單元少的特點,提升算法很適合于在定點DSP上實現(xiàn)。
小波提升算法的基本思想是通過基本小波逐步構(gòu)建出一個具有更加良好性質(zhì)的新小波。其實現(xiàn)步驟為分解(split)、預(yù)測(predict)和更新(update)。
首先按照對原信號進行對稱延拓得到新的x(n)。
分解是將數(shù)據(jù)分為偶數(shù)序列x(2n)和奇數(shù)序列x(2n+1)二個部分;
預(yù)測是用分解的偶數(shù)序列預(yù)測奇數(shù)序列,得到的預(yù)測誤差為變換的高頻分量:H(n)=x(2n+1)-{[x(2n)+x(2n+2)]>>1}
更新是由預(yù)測誤差更新偶數(shù)序列,得到變換的低頻分量: L(n)=x(2n)+{[H(n)+H(n-1)+2]>>2}
計算過程如圖1所示。


2 基于DM642的優(yōu)化策略
2.1 DM642的兩級CACHE結(jié)構(gòu)
DM642是一款專門面向多媒體處理領(lǐng)域應(yīng)用的處理器,是構(gòu)建多媒體通信系統(tǒng)的良好平臺。它采用C64xDSP內(nèi)核,片內(nèi)RAM采用兩級CACHE結(jié)構(gòu)[4][5],分為L1P、L1D和L2。L1只能作為CACHE被CPU訪問,均為16KB,訪問周期與CPU周期一致,其中L1P為直接映射,L1D為兩路成組相關(guān);L2可以由程序配置為CACHE和SRAM。
2.2 改進的算法結(jié)構(gòu)
傳統(tǒng)的小波變換都是對整幅圖像作變換,先對每一行作變換,然后再對每一列作變換。用這種方式在DSP上實現(xiàn)該算法時效率比較低。因為DSP的L1D很小,只有16KB,不能緩存整幅圖像,因此原始圖像數(shù)據(jù)通常保存在速度較低的外部存儲器上。這樣CPU從L1D每讀取一行數(shù)據(jù)時必然會產(chǎn)生缺失,大量缺失會嚴(yán)重阻塞CPU的運行,延長程序的執(zhí)行時間。為了減少缺失的發(fā)生,必須將傳統(tǒng)的變換進行改進。將原來對整幅圖像的變換改為分塊的變換,即每次從圖像中取出一個塊,先后完成行、列變換后再按照一定的規(guī)則保存到系數(shù)緩存中,如圖2所示。


在這種方法中,SDRAM中的一個數(shù)據(jù)塊首先傳輸?shù)絃2中,然后取到L1D中進行水平方向的提升,再對該塊進行垂直方向的提升。這樣,由于垂直提升所需的數(shù)據(jù)都在L1D中,避免了此處數(shù)據(jù)緩存缺失的產(chǎn)生,使總的缺失數(shù)大大降低。
2.3 數(shù)據(jù)傳輸
(1)SDRAM與L2間的數(shù)據(jù)傳輸
由于EDMA[6][7]數(shù)據(jù)傳輸與CPU運行相互獨立,因此在L2中開辟兩塊緩存:EDMA在CPU處理InBuffA的同時將下一塊數(shù)據(jù)傳輸?shù)絀nBuffB,解決了CPU讀取低速設(shè)備SDRAM引起的時延,如圖3所示。


(2)L2與L1D間的數(shù)據(jù)傳輸
CPU首先訪問第一級CACHE中的程序和數(shù)據(jù),如果沒有命中則訪問第二級CACHE(如果配置L2的一部分為CACHE),若還沒有命中就要訪問外部存儲空間。在這個過程中,CPU一直處于阻塞狀態(tài),直至讀取的數(shù)據(jù)有效。所以,在對L2中的數(shù)據(jù)塊進行水平提升時,CPU讀取每一行都會產(chǎn)生缺失。針對這種情況,TMS320C64x系列DSP為L1D提供了一種高速緩存缺失處理的流水處理機制。若連續(xù)多次未命中,CPU等待時間就會重疊,總體上減少了平均缺失造成的CPU阻塞時間。
因此,在CPU對數(shù)據(jù)進行水平提升前,利用缺失流水技術(shù),將當(dāng)前數(shù)據(jù)塊全部讀取到L1D中,隨后再對該數(shù)據(jù)塊進行水平提升,則不會再發(fā)生缺失,并可提高運算速度。
2.4 L1P與L1D性能優(yōu)化
L1D是兩路成組相關(guān),每組8KB,總?cè)萘?6KB。CPU一次處理的數(shù)據(jù)不應(yīng)超過8KB,并且所有的原始數(shù)據(jù)都連續(xù)存儲在同一CACHE組中;程序的中間過程數(shù)據(jù)保留在預(yù)分配的另一個CACHE組中。
數(shù)據(jù)讀取到L1D之后,首先由8位擴展成16位,然后對這些數(shù)據(jù)進行水平提升,只要這些數(shù)據(jù)能保留在L1D中,隨后進行的垂直提升就可以完全避免缺失。因此,數(shù)據(jù)塊的大小是由中間過程數(shù)據(jù)決定的,所有中間過程數(shù)據(jù)加起來不能超過8KB,選取數(shù)據(jù)塊是32×32。
當(dāng)多個函數(shù)映射到L1P的同一個CACHE行時就會引起沖突缺失,所以必須合理放置這些函數(shù)。由于實現(xiàn)提升的全部函數(shù)加起來不超過16KB,因此,如果能將這些函數(shù)安排在一個連續(xù)的存儲空間內(nèi),就可以完全避免由沖突引起的L1P缺失??梢栽赾md[8]文件的SECTIONS中添加一個GROUP,然后將頻繁調(diào)用的函數(shù)放到GROUP中:
SECTIONS
{
GROUP > ISRAM
{
.text:_horz
.text:_vert
.text:_IMG_pix_pand

}…}
2.5 程序優(yōu)化
由前面的分析可知,對圖像進行提升小波變換時,需要對其四個邊界進行延拓。延拓方式采用圖1所示的對稱延拓,其中左邊與上邊需要多延拓一個點。而對圖像中的一個塊進行提升變換時,其延拓的應(yīng)該是與該塊相鄰的四個塊數(shù)據(jù)的邊界數(shù)據(jù),如圖4所示。


邊界延拓主要是用于計算高頻系數(shù)。分析發(fā)現(xiàn),水平提升時,當(dāng)前數(shù)據(jù)塊每一行的最后一個高頻系數(shù)與下一個塊在該行的第一個高頻系數(shù)相同。所以只要把當(dāng)前塊的這些系數(shù)保存起來,在對下一塊進行水平提升時第一個高頻系數(shù)就不需要再進行計算,因此也就不需要再對其左邊界進行延拓了。垂直方向的提升也是同樣的道理。在程序中添加兩個數(shù)組,分別用于存放當(dāng)前塊的每一行與每一列的最后一個高頻系數(shù)。采用這種方法就可以降低程序的復(fù)雜度,提高執(zhí)行效率,減少缺失的發(fā)生。
像素擴展函數(shù)pix_pand[9]是采用TI的IMGLIB算法庫。水平提升與垂直提升函數(shù)均由作者用線性匯編語言編寫,充分利用64x系列DSP的半字處理指令,采用半字打包技術(shù),最大限度地提高程序的執(zhí)行效率。
水平提升時,將每行的數(shù)據(jù)重新排序,變成如圖5所示的結(jié)構(gòu)。


使用C64x的ADD2、SHR2和SUB2等半字處理指令,將如下的兩個運算并行執(zhí)行:
H(1)=B-[(A+C)>>1]
H(2)=D-[(C+E)>>1]
垂直提升時則可以安排多列的計算并行執(zhí)行,如圖6所示。
H1(1)=B1-[(A1+C1)>>1]
H2(1)=B2-[(A2+C2)>>1]

3 仿真結(jié)果
表1列出了CPU讀取L1D時產(chǎn)生的缺失數(shù)。其中,水平方向的缺失不可避免。由于要對數(shù)據(jù)塊的右側(cè)和底部進行邊界延拓,所以在水平方向的缺失數(shù)比傳統(tǒng)方法略高;而在垂直方向上,該算法完全避免了缺失的發(fā)生。


表2列出了幾種方法的計算性能。由于本文采用了多種優(yōu)化技術(shù),運算速度提高了4~10倍。
本文介紹了5/3提升小波變換及其在DM642上的實現(xiàn)。為了提高其性能提出了多項優(yōu)化技術(shù),試驗證明這些方法十分有效。

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動電源

在工業(yè)自動化蓬勃發(fā)展的當(dāng)下,工業(yè)電機作為核心動力設(shè)備,其驅(qū)動電源的性能直接關(guān)系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅(qū)動電源設(shè)計中至關(guān)重要的兩個環(huán)節(jié),集成化方案的設(shè)計成為提升電機驅(qū)動性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機 驅(qū)動電源

LED 驅(qū)動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設(shè)備的使用壽命。然而,在實際應(yīng)用中,LED 驅(qū)動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設(shè)計、生...

關(guān)鍵字: 驅(qū)動電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動電源的公式,電感內(nèi)電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計 驅(qū)動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動汽車的核心技術(shù)之一是電機驅(qū)動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅(qū)動系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動汽車的動力性能和...

關(guān)鍵字: 電動汽車 新能源 驅(qū)動電源

在現(xiàn)代城市建設(shè)中,街道及停車場照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動電源 LED

LED通用照明設(shè)計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現(xiàn)在的LED驅(qū)動電源

關(guān)鍵字: LED 驅(qū)動電源 開關(guān)電源

LED驅(qū)動電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動電源
關(guān)閉