www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當前位置:首頁 > 嵌入式 > 嵌入式硬件
[導讀]語言的內存管理是語言設計的一個重要方面。它是決定語言性能的重要因素。無論是C語言的手工管理,還是Java的垃圾回收,都成為語言最重要的特征。這里以Python語言為例子,說明一門動態(tài)類型的、面向對象的語言的內存管理方式。

語言的內存管理是語言設計的一個重要方面。它是決定語言性能的重要因素。無論是C語言的手工管理,還是Java的垃圾回收,都成為語言最重要的特征。這里以Python語言為例子,說明一門動態(tài)類型的、面向對象的語言的內存管理方式。

對象的內存使用

賦值語句是語言最常見的功能了。但即使是最簡單的賦值語句,也可以很有內涵。Python的賦值語句就很值得研究。

a = 1

整數(shù)1為一個對象。而a是一個引用。利用賦值語句,引用a指向對象1。Python是動態(tài)類型的語言(參考 動態(tài)類型 ),對象與引用分離。Python像使用“筷子”那樣,通過引用來接觸和翻動真正的食物——對象。

引用和對象

為了探索對象在內存的存儲,我們可以求助于Python的內置函數(shù) id() 。它用于返回對象的身份(identity)。其實,這里所謂的身份,就是該對象的 內存地址 。

a = 1

print(id(a))

print(hex(id(a)))

在我的計算機上,它們返回的是:

11246696

'0xab9c68'

分別為內存地址的十進制和十六進制表示。

在Python中,整數(shù)和短小的字符,Python都會緩存這些對象,以便重復使用。當我們創(chuàng)建多個等于1的引用時,實際上是讓所有這些引用指向同一個對象。

a = 1

b = 1

print(id(a))

print(id(b))

上面程序返回

11246696

11246696

可見a和b實際上是指向同一個對象的兩個引用。

為了檢驗兩個引用指向同一個對象,我們可以用 is 關鍵字。is用于判斷兩個引用所指的對象是否相同。

# Truea = 1 b = 1 print(a is b) # True a = "good" b = "good" print(a is b) # False a = "very good morning" b = "very good morning" print(a is b) # False a = [] b = [] print(a is b)

上面的注釋為相應的運行結果??梢钥吹?,由于Python緩存了整數(shù)和短字符串,因此每個對象只存有一份。比如,所有整數(shù)1的引用都指向同一對象。即使使用賦值語句,也只是創(chuàng)造了新的引用,而不是對象本身。長的字符串和其它對象可以有多個相同的對象,可以使用賦值語句創(chuàng)建出新的對象。

在Python中,每個對象都有存有指向該對象的引用總數(shù),即 引用計數(shù) (reference count)。

我們可以使用 sys 包中的 getrefcount() ,來查看某個對象的引用計數(shù)。需要注意的是,當使用某個引用作為參數(shù),傳遞給getrefcount()時,參數(shù)實際上創(chuàng)建了一個臨時的引用。因此,getrefcount()所得到的結果,會比期望的多1。

from sys import getrefcount a = [1, 2, 3] print(getrefcount(a)) b = a print(getrefcount(b))

由于上述原因,兩個getrefcount將返回2和3,而不是期望的1和2。

對象引用對象

Python的一個容器對象(container),比如表、詞典等,可以包含多個對象。實際上,容器對象中包含的并不是元素對象本身,是指向各個元素對象的引用。

我們也可以自定義一個對象,并引用其它對象:

class from_obj(object): def __init__(self, to_obj): self.to_obj = to_obj b = [1,2,3] a = from_obj(b) print(id(a.to_obj)) print(id(b))

可以看到,a引用了對象b。

對象引用對象,是Python最基本的構成方式。即使是a = 1這一賦值方式,實際上是讓詞典的一個鍵值"a"的元素引用整數(shù)對象1。該詞典對象用于記錄所有的全局引用。該詞典引用了整數(shù)對象1。我們可以通過內置函數(shù) globals() 來查看該詞典。

當一個對象A被另一個對象B引用時,A的引用計數(shù)將增加1。

from sys import getrefcount a = [1, 2, 3] print(getrefcount(a)) b = [a, a] print(getrefcount(a))

由于對象b引用了兩次a,a的引用計數(shù)增加了2。

容器對象的引用可能構成很復雜的拓撲結構。我們可以用objgraph包來繪制其引用關系,比如

x = [1, 2, 3] y = [x, dict(key1=x)] z = [y, (x, y)] import objgraph objgraph.show_refs([z], filename='ref_topo.png')

objgraph是Python的一個第三方包。安裝之前需要安裝xdot。

sudo apt-get install xdot sudo pip install objgraph

objgraph官網

兩個對象可能相互引用,從而構成所謂的 引用環(huán) (reference cycle)。

a = []

b = [a]

a.append(b)

即使是一個對象,只需要自己引用自己,也能構成引用環(huán)。

a = []

a.append(a)

print(getrefcount(a))

引用環(huán)會給垃圾回收機制帶來很大的麻煩,我將在后面詳細敘述這一點。

引用減少

某個對象的引用計數(shù)可能減少。比如,可以使用del關鍵字刪除某個引用:

from sys import getrefcount a = [1, 2, 3] b = a print(getrefcount(b)) del a print(getrefcount(b))

del也可以用于刪除容器元素中的元素,比如:

a = [1,2,3]

del a[0]

print(a)

如果某個引用指向對象A,當這個引用被重新定向到某個其他對象B時,對象A的引用計數(shù)減少:

from sys import getrefcount a = [1, 2, 3] b = a print(getrefcount(b)) a = 1 print(getrefcount(b))

垃圾回收

吃太多,總會變胖,Python也是這樣。當Python中的對象越來越多,它們將占據越來越大的內存。不過你不用太擔心Python的體形,它會乖巧的在適當?shù)臅r候“減肥”,啟動 垃圾回收 (garbage collection),將沒用的對象清除。在許多語言中都有垃圾回收機制,比如Java和Ruby。盡管最終目的都是塑造苗條的提醒,但不同語言的減肥方案有很大的差異 (這一點可以對比本文和 Java內存管理與垃圾回收

)。

從基本原理上,當Python的某個對象的引用計數(shù)降為0時,說明沒有任何引用指向該對象,該對象就成為要被回收的垃圾了。比如某個新建對象,它被分配給某個引用,對象的引用計數(shù)變?yōu)?。如果引用被刪除,對象的引用計數(shù)為0,那么該對象就可以被垃圾回收。比如下面的表:

a = [1, 2, 3]

del a

del a后,已經沒有任何引用指向之前建立的[1, 2, 3]這個表。用戶不可能通過任何方式接觸或者動用這個對象。這個對象如果繼續(xù)待在內存里,就成了不健康的脂肪。當垃圾回收啟動時,Python掃描到這個引用計數(shù)為0的對象,就將它所占據的內存清空。

然而,減肥是個昂貴而費力的事情。垃圾回收時,Python不能進行其它的任務。頻繁的垃圾回收將大大降低Python的工作效率。如果內存中的對象不多,就沒有必要總啟動垃圾回收。所以,Python只會在特定條件下, 自動啟動 垃圾回收。當Python運行時,會記錄其中分配對象(object allocation)和取消分配對象(object deallocation)的次數(shù)。當兩者的差值高于某個 閾值 時,垃圾回收才會啟動。

我們可以通過gc模塊的 get_threshold() 方法,查看該閾值:

import gc

print(gc.get_threshold())

返回(700, 10, 10),后面的兩個10是與分代回收相關的閾值,后面可以看到。700即是垃圾回收啟動的閾值??梢酝ㄟ^gc中的 set_threshold() 方法重新設置。

我們也可以 手動啟動 垃圾回收,即使用 gc.collect() 。

分代回收

Python同時采用了 分代 (generation)回收的策略。這一策略的基本假設是,存活時間越久的對象,越不可能在后面的程序中變成垃圾。我們的程序往往會產生大量的對象,許多對象很快產生和消失,但也有一些對象長期被使用。出于信任和效率,對于這樣一些“長壽”對象,我們相信它們的用處,所以減少在垃圾回收中掃描它們的頻率。

小家伙要多檢查

Python將所有的對象分為0,1,2三代。所有的新建對象都是0代對象。當某一代對象經歷過垃圾回收,依然存活,那么它就被歸入下一代對象。垃圾回收啟動時,一定會掃描所有的0代對象。如果0代經過一定 次數(shù) 垃圾回收,那么就啟動對0代和1代的掃描清理。當1代也經歷了一定 次數(shù) 的垃圾回收后,那么會啟動對0,1,2,即對所有對象進行掃描。

這兩個次數(shù)即上面get_threshold()返回的(700, 10, 10)返回的兩個10。也就是說,每10次0代垃圾回收,會配合1次1代的垃圾回收;而每10次1代的垃圾回收,才會有1次的2代垃圾回收。

同樣可以用set_threshold()來調整,比如對2代對象進行更頻繁的掃描。

import gc

gc.set_threshold(700, 10, 5)

孤立的引用環(huán)

引用環(huán)的存在會給上面的垃圾回收機制帶來很大的困難。這些引用環(huán)可能構成無法使用,但引用計數(shù)不為0的一些對象。

a = [] b = [a] a.append(b) del a del b

上面我們先創(chuàng)建了兩個表對象,并引用對方,構成一個引用環(huán)。刪除了a,b引用之后,這兩個對象不可能再從程序中調用,就沒有什么用處了。但是由于引用環(huán)的存在,這兩個對象的引用計數(shù)都沒有降到0,不會被垃圾回收。

孤立的引用環(huán)

為了回收這樣的引用環(huán),Python復制每個對象的引用計數(shù),可以記為gc_ref。假設,每個對象i,該計數(shù)為gc_ref_i。Python會遍歷所有的對象i。對于每個對象i引用的對象j,將相應的gc_ref_j減1。

遍歷后的結果

在結束遍歷后,gc_ref不為0的對象,和這些對象引用的對象,以及繼續(xù)更下游引用的對象,需要被保留。而其它的對象則被垃圾回收。

總結

Python作為一種動態(tài)類型的語言,其對象和引用分離。這與曾經的面向過程語言有很大的區(qū)別。為了有效的釋放內存,Python內置了垃圾回收的支持。Python采取了一種相對簡單的垃圾回收機制,即引用計數(shù),并因此需要解決孤立引用環(huán)的問題。Python與其它語言既有共通性,又有特別的地方。對該內存管理機制的理解,是提高Python性能的重要一步。

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內容真實性等。需要轉載請聯(lián)系該專欄作者,如若文章內容侵犯您的權益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: 驅動電源

在工業(yè)自動化蓬勃發(fā)展的當下,工業(yè)電機作為核心動力設備,其驅動電源的性能直接關系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅動電源設計中至關重要的兩個環(huán)節(jié),集成化方案的設計成為提升電機驅動性能的關鍵。

關鍵字: 工業(yè)電機 驅動電源

LED 驅動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設備的使用壽命。然而,在實際應用中,LED 驅動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設計、生...

關鍵字: 驅動電源 照明系統(tǒng) 散熱

根據LED驅動電源的公式,電感內電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關鍵字: LED 設計 驅動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產業(yè)的重要發(fā)展方向。電動汽車的核心技術之一是電機驅動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅動系統(tǒng)中的關鍵元件,其性能直接影響到電動汽車的動力性能和...

關鍵字: 電動汽車 新能源 驅動電源

在現(xiàn)代城市建設中,街道及停車場照明作為基礎設施的重要組成部分,其質量和效率直接關系到城市的公共安全、居民生活質量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關鍵字: 發(fā)光二極管 驅動電源 LED

LED通用照明設計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關鍵字: LED 驅動電源 功率因數(shù)校正

在LED照明技術日益普及的今天,LED驅動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關鍵字: LED照明技術 電磁干擾 驅動電源

開關電源具有效率高的特性,而且開關電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現(xiàn)在的LED驅動電源

關鍵字: LED 驅動電源 開關電源

LED驅動電源是把電源供應轉換為特定的電壓電流以驅動LED發(fā)光的電壓轉換器,通常情況下:LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: LED 隧道燈 驅動電源
關閉