www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當前位置:首頁 > 嵌入式 > 嵌入式教程
[導讀]FDTD參數(shù)選擇估計程序

針對二階精度的時域有限差分程序.

  現(xiàn)可直接調用的源信號是:一個周期的正弦信號,高期脈沖,ricker子波.

  其它信號可手動修改源信號接口,或源生成函數(shù).

  ---------------

  請函數(shù).

  %************************************************************

  % 1. determine maximum possible spatial field discretization.

  % (in order to avoid numerical dispersion).(5 grid points per

  % minimum wavelength are needed to avoid dispersion).

  % 2. find the maximum possible time step using this dx and dz.

  % (in order to avoid numerical instability).

  % Coded by yiling. Email: yiling@email.jlu.edu.cn

  % Date: 2008

  %*************************************************************************+

  clear;

  clc;

  %--------------------------------------------------------------------------

  dx=0.02; % (m)

  dy=0.02; % (m)

  epsilonmax=25; % Epsion. maximum relative dielectric permittivity.

  mumax=1; % Mu. maximum relative magnetic permeability.

  sourcetype='ricker'; % can be 'cont_sine', 'gaussian', 'ricker'.

  freq=100e6; % (Hz)

  amp=1; % amplitude.

  thres=0.02; % threshold to determine maximum frequency in source pulse.(proposed = 0.02).

  %--------------------------------------------------------------------------

  Timewindows=528; % (ns)

  %--------------------------------------------------------------------------

  %*************************************************************************+

  %--------------------------------------------------------------------------

  vlight=0.3;

  epsilonmin=1; % Epsion. minimum relative dielectric permittivity.

  mumin=1; % Mu. minimum relative magnetic permeability.

  %--------------------------------------------------------------------------

  dt=1/(vlight*sqrt(1/dx^2+1/dy^2));

  % minwavelength=vlight/sqrt(epsilinmax);

  %--------------------------------------------------------------------------

  t=0:dt:Timewindows;

  dt=dt*1e-9;

  t=t*1e-9;

  Timewindows=Timewindows*1e-9;

  source=gprmaxso(sourcetype,amp,freq,dt,Timewindows);

  [dxmax,wlmin,fmax] = finddx(epsilonmax,mumax,source,t,thres);

  %--------------------------------------------------------------------------

  disp('----------------------------------------------------------------- ');

  disp(['Maximum frequency contained in source pulse = ',num2str(fmax/1e6),' MHz']);

  disp(['Minimum wavelength in simulation grid = ',num2str(wlmin),' m']);

  disp(['Maximum possible electric/magnetic field discretization (dx,dy) = ',num2str(dxmax),' m']);

  disp(' ');

  %--------------------------------------------------------------------------

  %--------------------------------------------------------------------------

  dtmax = finddt(epsilonmin,mumin,dxmax,dxmax);

  disp(['Maximum possible time step with this discretization = ',num2str(dtmax/1e-9),' ns']);

  disp('----------------------------------------------------------------- ');

  %**************************************************

  子函數(shù)1

  function dtmax = finddt(epmin,mumin,dx,dz);

  % finddt.m

  %

  % This function finds the maximum time step that can be used in the 2-D

  % FDTD modeling codes TM_model2d.m and TE_model2d.m, such that they remain

  % numerically stable. Second-order-accurate time and fourth-order-accurate

  % spatial derivatives are assumed (i.e., O(2,4)).

  %

  % Syntax: dtmax = finddt(epmin,mumin,dx,dz)

  %

  % where dtmax = maximum time step for FDTD to be stable

  % epmin = minimum relative dielectric permittivity in grid

  % mumin = minimum relative magnetic permeability in grid

  % dx = spatial discretization in x-direction (m)

  % dz = spatial discretization in z-direction (m)

  %

  % by James Irving

  % July 2005

  % convert relative permittivity and permeability to true values

  mu0 = 1.2566370614e-6;

  ep0 = 8.8541878176e-12;

  epmin = epmin*ep0;

  mumin = mumin*mu0;

  % determine maximum allowable time step for numerical stability

  dtmax = 6/7*sqrt(epmin*mumin/(1/dx^2 + 1/dz^2));

  子函數(shù)2

  function [dxmax,wlmin,fmax] = finddx(epmax,mumax,srcpulse,t,thres);

  % finddx.m

  %

  % This function finds the maximum spatial discretization that can be used in the

  % 2-D FDTD modeling codes TM_model2d.m and TE_model2d.m, such that numerical

  % dispersion is avoided. Second-order accurate time and fourth-order-accurate

  % spatial derivatives are assumed (i.e., O(2,4)). Consequently, 5 field points

  % per minimum wavelength are required.

  %

  % Note: The dx value obtained with this program is needed to compute the maximum

  % time step (dt) that can be used to avoid numerical instability. However, the

  % time vector and source pulse are required in this code to determine the highest

  % frequency component in the source pulse. For this program, make sure to use a fine[!--empirenews.page--]

  % temporal discretization for the source pulse, such that no frequency components

  % present in the pulse are aliased.

  %

  % Syntax: [dx,wlmin,fmax] = finddx(epmax,mumax,srcpulse,t,thres)

  %

  % where dxmax = maximum spatial discretization possible (m)

  % wlmin = minimum wavelength in the model (m)

  % fmax = maximum frequency contained in source pulse (Hz)

  % epmax = maximum relative dielectric permittivity in grid

  % mumax = maximum relative magnetic permeability in grid

  % srcpulse = source pulse for FDTD simulation

  % t = associated time vector (s)

  % thres = threshold to determine maximum frequency in source pulse

  % (default = 0.02)

  %

  % by James Irving

  % July 2005

  if nargin==4; thres=0.02; end

  % convert relative permittivity and permeability to true values

  mu0 = 1.2566370614e-6;

  ep0 = 8.8541878176e-12;

  epmax = epmax*ep0;

  mumax = mumax*mu0;

  % compute amplitude spectrum of source pulse and corresponding frequency vector

  n = 2^nextpow2(length(srcpulse));

  W = abs(fftshift(fft(srcpulse,n)));

  W = W./max(W);

  fn = 0.5/(t(2)-t(1));

  df = 2.*fn/n;

  f = -fn:df:fn-df;

  W = W(n/2+1:end);

  f = f(n/2+1:end);

  % determine the maximum allowable spatial disretization

  % (5 grid points per minimum wavelength are needed to avoid dispersion)

  fmax = f(max(find(W>=thres)));

  wlmin = 1/(fmax*sqrt(epmax*mumax));

  dxmax = wlmin/5;

  子函數(shù)3

  function [excitation]=gprmaxso(type,amp,freq,dt,total_time);

  % GPRMAXSO Computes the excitation function used in 'GprMax2D/3D'

  % simulators for ground probing radar.

  %

  % [excitation] = gprmaxso('source_type',Amplitude,frequency,Time_step,Time_window)

  % source_type can be 'cont_sine', 'gaussian', 'ricker'

  % Amplitude is the amplitude of the source

  % frequency is the frequency of the source in Hz

  % Time_step is the time step in seconds

  % Time_window is the total simulated time in seconds

  %

  % excitation is a vector which contains the excitation function.

  % If you type plot(excitation) Matlab will plot it.

  % You can use the signal processing capabilities of Matlab

  % to get a Spectrum etc.

  %

  % Copyright: Antonis Giannopoulos, 2002 This file can be distributed freely.

  RAMPD=0.25;

  if(nargin < 5)

  error('GPRMAXSO requires all five arguments ');

  end;

  if(isstr(type)~=1)

  error('First argument should be a source type');

  end;

  if(freq==0)

  error(['Frequency is zero']);

  end;

  iter=total_time/dt;

  time=0;

  if(strcmp(type,'ricker')==1)

  rickth=2.0*pi*pi*freq*freq;

  rickper=1.0/freq;

  ricksc=sqrt(exp(1.0)/(2.0*rickth));

  i=1;

  while(time<=total_time)

  delay=(time-rickper);

  temp=exp(-rickth*delay*delay);

  excitation(i)=ricksc*temp*(-2.0)*rickth*delay;

  time=time+dt;

  i=i+1;

  end;

  end;

  if(strcmp(type,'gaussian')==1)

  rickper=1.0/freq;

  rickth=2.0*pi*pi*freq*freq;

  i=1;

  while(time<=total_time)[!--empirenews.page--]

  delay=(time-rickper);

  excitation(i)=exp((-rickth)*delay*delay);

  time=time+dt;

  i=i+1;

  end;

  end;

  if(strcmp(type,'cont_sine')==1)

  i=1;

  while(time<=total_time)

  ramp=time*RAMPD*freq;

  if(ramp>1.0)

  ramp=1.0;

  end;

  excitation(i)=ramp*sin(2.0*pi*freq*time);

  time=time+dt;

  i=i+1;

  end;

  end;

  if(strcmp(type,'sine')==1)

  i=1;

  while(time<=total_time)

  excitation(i)=sin(2.0*pi*freq*time);

  if(time*freq>1.0)

  excitation(i)=0.0;

  end;

  time=time+dt;

  i=i+1;

  end;

  end;

  excitation=excitation.*amp;

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內容真實性等。需要轉載請聯(lián)系該專欄作者,如若文章內容侵犯您的權益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

世界上最大的兩家資產(chǎn)管理公司貝萊德(BlackRock)和先鋒(Vanguard)等金融機構已在英國一項問詢中表示,它們將繼續(xù)投資化石燃料,并且不認同氣候變化計劃要求停止新的煤炭、石油和天然氣投資的觀點。貝萊德是試圖采取...

關鍵字: CK 天然氣 AN AC

(全球TMT2022年10月17日訊)日前,德勤中國旗下德勤管理咨詢中國數(shù)據(jù)科學卓越中心所出品的"機器學習推薦算法"論文被第十三屆IEEE 知識圖譜國際會議(簡稱"ICKG")收錄。ICKG是知識圖譜研究領域的國際權威...

關鍵字: 機器學習 IC CK MULTI

上海2022年10月17日 /美通社/ -- 日前,德勤中國迎來喜訊:旗下德勤管理咨詢中國數(shù)據(jù)科學卓越中心所出品的"機器學習推薦算法"論文被第十三屆IEEE 知識圖譜國際會議(以下簡稱"IC...

關鍵字: 機器學習 IC CK FM

利安德巴賽爾和23 Oaks Investments簽署協(xié)議,創(chuàng)建Source One Plastics。這是一家合資企業(yè),將在德國建立一個節(jié)能、先進的塑料垃圾分類和回收設施。新設施的設計利用來自風能和生物質能的可再生能...

關鍵字: SOURCE 可再生能源 INVESTMENT TI

上海2022年10月11日 /美通社/ -- 全球領先金融科技公司Airwallex空中云匯今日宣布完成1億美元E2輪融資?,F(xiàn)有投資方Square Peg、Salesforce Ventures、紅杉中國、Lone Pi...

關鍵字: AIR CK AC API

據(jù)天眼查APP信息,9月27日,江蘇和府餐飲管理有限公司(和府撈面運營主體)新增一條商標注冊信息,該商標為“HF PICK ME咖啡便利店”。此前,該公司就曾申請注冊過多個“和府一杯咖啡”和“和府一杯拉面”商標。(知消)...

關鍵字: APP PIC CK

默沙東(MSD)和國藥集團聯(lián)合宣布,雙方簽署合作框架協(xié)議,默沙東將其和Ridgeback公司合作研發(fā)的抗新冠病毒口服藥物莫諾拉韋的經(jīng)銷權和獨家進口權授予國藥集團,同時雙方將評估技術轉讓的可行性,以便該藥物在中國境內生產(chǎn)、...

關鍵字: SD GE CK AC

法拉第未來大股東FF Top Holding LLC 與公司達成公司治理重組協(xié)議,包括執(zhí)行董事長Sue Swenson和董事Brian Krolicki在達成一定條件下的辭職。FF Top將會不晚于2022年9月27日偏...

關鍵字: 法拉第未來 TOP IC CK

(全球TMT2022年9月20日訊)全球性電子競技俱樂部Gen.G與國際運動品牌PUMA宣布雙方將全球合作伙伴關系延長至數(shù)年。2020年6月開啟合作的Gen.G與PUMA將以本次續(xù)約作為墊腳石,持續(xù)進行融合游戲、電競文...

關鍵字: GEN 電子競技 MT CK

紀念全球合作伙伴關系的延長,推出新的休閑生活系列 通過多樣的合作活動,擴大電競文化影響力,提高雙方品牌價值 上海 2022年9月20日 /美通社/ -- 全球性電子競技俱樂部Gen.G...

關鍵字: GEN 電子競技 CK BSP

嵌入式教程

6897 篇文章

關注

發(fā)布文章

編輯精選

技術子站

關閉