www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當(dāng)前位置:首頁 > 嵌入式 > 嵌入式教程
[導(dǎo)讀]一種快速的公交專用車道檢測(cè)方法

摘 要: 為了提高車道線檢測(cè)的準(zhǔn)確性和實(shí)時(shí)性,提出了一種快速準(zhǔn)確的車道線檢測(cè)方法。首先根據(jù)道路的紋理特征求出道路的消失點(diǎn),再采用改進(jìn)的Hough變換檢測(cè)出車道線,結(jié)合車道線的一些特征以及攝像頭的參數(shù),在不影響測(cè)量結(jié)果的情況下縮小檢測(cè)空間,快速準(zhǔn)確地檢測(cè)道路的車道線,并結(jié)合BRT車道(快速公交車道)的一些特征識(shí)別車輛所在車道是否為BRT車道,從而實(shí)現(xiàn)對(duì)BRT車道內(nèi)前方車輛的監(jiān)督。將代碼移植到DM6437開發(fā)平臺(tái)隨著經(jīng)濟(jì)以及道路的發(fā)展,我國的汽車保有量迅速上升,交通事故也成為人們普遍關(guān)注的焦點(diǎn)。為了提高駕駛的安全性以及操作的簡單性,車輛安全輔助駕駛系統(tǒng)成為當(dāng)今國際智能交通系統(tǒng)研究的重要內(nèi)容。車道線檢測(cè)作為車輛安全駕駛的一個(gè)重要研究方向,可以在車輛偏離航道時(shí)發(fā)出報(bào)警信息,有效地抑制事故的發(fā)生,具有重要的研究意義。

目前,國內(nèi)外學(xué)者已經(jīng)提出了很多車道線檢測(cè)算法,主要分為兩類:一類是基于圖像特征的檢測(cè)方法,即特征驅(qū)動(dòng)法,是基于道路圖像的一些特征(如車道線顏色、寬度以及邊緣等特征)將圖像的所有點(diǎn)標(biāo)記為車道線點(diǎn)和非車道線點(diǎn),這種機(jī)制要求道路的車道線顏色較為明顯,邊緣較為清晰,否則無法得到準(zhǔn)確的檢測(cè)結(jié)果;另一類方法是基于模型的檢測(cè)方法,是根據(jù)提取的特征對(duì)預(yù)先定義好的車道線模型進(jìn)行匹配,將車道線的提取轉(zhuǎn)化為車道線模型中參數(shù)的計(jì)算問題。模型的假設(shè)主要有直線模型和曲線模型兩種,其優(yōu)點(diǎn)是對(duì)噪音不敏感,能較好地處理圖像中物體局部被遮擋和覆蓋的情況。本文結(jié)合道路的紋理特征并建立模型進(jìn)行車道檢測(cè),既充分利用圖像的信息,又在一定程度上保證了算法的魯棒性。

本文首先對(duì)圖像進(jìn)行預(yù)處理,然后對(duì)圖像進(jìn)行Hough變換或者Gabor變換,得到車道線位置信息,判斷出車輛是否在車道內(nèi)行駛,如果不在則發(fā)出預(yù)警信號(hào)。

1 圖像的預(yù)處理

圖像的預(yù)處理主要是對(duì)攝像頭實(shí)時(shí)采集的圖像進(jìn)行前期處理,主要包括去除圖像的各種噪聲,并根據(jù)攝像機(jī)的位置調(diào)節(jié)算法中的一些參數(shù)提取圖像的感興趣區(qū)域(ROI),以及進(jìn)行邊緣檢測(cè)等,目的是為了加強(qiáng)圖像的有用信息,抑制干擾。

標(biāo)定攝像頭以后,選取一定的區(qū)域作為車道線檢測(cè)區(qū)域,進(jìn)行平滑去噪,并對(duì)其邊緣進(jìn)行檢測(cè)。本文采用Canny邊緣檢測(cè)。圖1為拍攝的原始道路圖像,圖2為不同環(huán)境下(白天、陰天、夜晚)的檢測(cè)結(jié)果。

 

 

 

 

2 基于Hough 變換的車道線檢測(cè)

2.1 傳統(tǒng)Hough 變換原理

對(duì)于建立的車道線模型為直線的情況下,Hough 變換作為車道線檢測(cè)的一個(gè)方法, 廣泛用于車道線識(shí)別領(lǐng)域。Hough 變換的實(shí)質(zhì)是對(duì)圖像進(jìn)行坐標(biāo)變換, 使變換的結(jié)果更易于識(shí)別和檢測(cè)。Hough 變換的表達(dá)式為:

 

 

其中, (x,y ) 表示圖像空間的某一點(diǎn), ρ 是圖像空間中直線到坐標(biāo)原點(diǎn)的距離,θ 是直線與x 軸的夾角。傳統(tǒng)Hough 變換投票空間ρ 和θ 的選擇范圍通常為ρ∈(0,r)( 其中r 為圖像對(duì)角線長度) ,θ∈(0,180 ) .(ρ ,θ)為坐標(biāo)變換后的參數(shù)空間某一點(diǎn), 其將圖像空間(x-y ) 的點(diǎn)轉(zhuǎn)換到參數(shù)空間(ρ-θ), 可以證明圖像空間中同一直線上的點(diǎn)在參數(shù)空間中對(duì)應(yīng)的正弦曲線交于一點(diǎn)(ρ ,θ)。因此對(duì)圖像空間的目標(biāo)點(diǎn)進(jìn)行坐標(biāo)變換投影到參數(shù)空間,通過統(tǒng)計(jì)參數(shù)空間的總投票次數(shù)較多的點(diǎn), 即可找到圖像空間對(duì)應(yīng)的直線方程。

Hough變換作為一種經(jīng)典的車道線檢測(cè)算法,具有很強(qiáng)的適應(yīng)性,然而該算法較為耗時(shí),當(dāng)車道線外在環(huán)境因素較為不清晰,或者受道路上一些其他因素的影響下,結(jié)果受干擾較大。Hough變換檢測(cè)結(jié)果如圖3所示。

 

2.2 基于ROI區(qū)域改進(jìn)的Hough變換的車道線檢測(cè)

針對(duì)圖像中道路的車道線一般分布在道路左右兩邊的情況,本文對(duì)傳統(tǒng)Hough變換的應(yīng)用進(jìn)行了改進(jìn),限定其投票空間的范圍,也就是限定ρ和θ來調(diào)整其投票空間的范圍。限定其左右車道線的極角和極徑,調(diào)節(jié)好攝像頭,通過不斷的測(cè)試,得到目標(biāo)點(diǎn)的極角約束區(qū)域和極徑約束區(qū)域,也就得到感興趣區(qū)域(ROI),如圖4所示,只檢測(cè)落在白色區(qū)域內(nèi)的車道線。

 

 

通過建立極角、極徑約束區(qū)域,可以有效地去除大量的干擾點(diǎn),濾除旁邊車道以及路邊樹木建筑物的干擾,并能夠很大程度地提高算法的運(yùn)行速度。當(dāng)車道線的極角極徑在檢測(cè)區(qū)域內(nèi)時(shí),可以快速準(zhǔn)確地檢測(cè)車道線的位置;然而當(dāng)圖像在轉(zhuǎn)彎、變道或者攝像頭位置偏移時(shí),車道線很容易超出檢測(cè)區(qū)域,使得結(jié)果出現(xiàn)很大的偏差。

3 基于Gabor濾波器的車道線檢測(cè)

針對(duì)道路車道線不清晰以及存在一些其他標(biāo)志干擾的情況,本文提出了改進(jìn)的車道線檢測(cè)算法,即基于Gabor濾波器的車道線檢測(cè)。通過Gabor找到圖像的消失點(diǎn),即圖像中兩條車道線的交點(diǎn)位置,再對(duì)消失點(diǎn)進(jìn)行Hough變換,這樣不僅提高了算法的適用性,還提高了算法的實(shí)時(shí)性。

3.1 Gabor變換原理

Gabor濾波器與人眼的生物作用相仿,因此經(jīng)常用于紋理識(shí)別,并取得了較好的效果。Gabor濾波器是帶通濾波器, 它的單位沖激響應(yīng)函數(shù)(Gabor函數(shù))是高斯函數(shù)與復(fù)指數(shù)函數(shù)的乘積。它是達(dá)到時(shí)頻測(cè)不準(zhǔn)關(guān)系下界的函數(shù), 具有最好的兼顧信號(hào)在時(shí)頻域的分辨能力。高斯函數(shù)的局部性特征使得Gabor濾波器只在局部起作用, 即具有良好的尺度特性和方向特性。因此,Gabor濾波器被廣泛用于圖像處理和圖像分析領(lǐng)域。[!--empirenews.page--]

本文通過對(duì)車轍印記以及車道線邊緣等一些紋理特征進(jìn)行分析,從而提取出道路的消失點(diǎn)以及車道線的信息。

Gabor濾波器的模板計(jì)算方程如式(2)所示,該模板分為實(shí)部(式(3))和虛部(式(4))兩部分。

 

 

通過建立K×K 大小的Gabor 模板,(x,y) 表示圖像空間的一點(diǎn)。其中,θ 表示模板的方向, 為確定最后的道路紋理方向, 這里選擇范圍為0~72 ;λ 表示路面的波長;σ表示噪聲容量, 本文取σ=K/9 .

3.2 消失點(diǎn)的求解

本文用不同方向的模板與圖像進(jìn)行卷積, 對(duì)于圖像任意一點(diǎn), 即可得到某一個(gè)方向上的卷積的結(jié)果為最大值, 這個(gè)最大值為紋理方向?qū)?yīng)的能量, 該方向?yàn)榧y理的方向。

 

 

其中,α 表示模板對(duì)應(yīng)的方向, 對(duì)于圖像中的任意點(diǎn)I(x,y) 與α 方向的Gabor 模板進(jìn)行卷積, 得到不同的t(x,y),求取其最大值, 將最大值對(duì)應(yīng)的方向作為圖像中(x,y)點(diǎn)的紋理方向, 同時(shí)將該最大值作為紋理方向上的紋理強(qiáng)度。

通 過計(jì)算可以得到圖像中每一點(diǎn)的紋理方向以及能量。為了計(jì)算出消失點(diǎn), 對(duì)圖像中選取的點(diǎn)進(jìn)行投票,這里選擇圖像下方一定的區(qū)域點(diǎn), 如圖5 所示。當(dāng)紋理能量大于設(shè)定閾值的點(diǎn)作為投票點(diǎn),p 表示圖像中投票空間的點(diǎn),θ (p) 表示p 紋理方向,v 表示消失點(diǎn)的候選點(diǎn),a (p ,v) 表示p 點(diǎn)與v 點(diǎn)的夾角,n 為采用的Gabor 模板方向的個(gè)數(shù),R 為定義的投票空間, 即圖6 對(duì)應(yīng)的方框區(qū)域, 通過vote (p,v) 來統(tǒng)計(jì)p 點(diǎn)對(duì)v 點(diǎn)的投票結(jié)果,votes (v ) 為對(duì)R 區(qū)域累加進(jìn)行投票的統(tǒng)計(jì)結(jié)果,pvote 為最終被投票次數(shù)最多的點(diǎn)的坐標(biāo), 即消失點(diǎn)。

 

 

 

 

圖6 中的框表示選取的投票區(qū)域, 即在該區(qū)域內(nèi)選取400 個(gè)點(diǎn)進(jìn)行Gabor 變換, 求出其紋理方及能量; 圓圈是求出的消失點(diǎn)位置。

 

 

 

3.3 車道線檢測(cè)

對(duì)于傳統(tǒng)的Hough 變換, 需要對(duì)每個(gè)點(diǎn)每個(gè)角度進(jìn)行遍歷, 這樣比較耗時(shí)。本文采用改進(jìn)的Hough 變換, 對(duì)消失點(diǎn)及其周圍的有限個(gè)像素進(jìn)行Hough 變換, 求取左右車道線的兩個(gè)峰值點(diǎn),并繪制出車道線。該方法能夠有效地抑制圖像的其他邊緣噪聲干擾,提高算法的實(shí)時(shí)性。車道檢測(cè)結(jié)果如圖7 所示。

 

 

3.4 車道線跟蹤

跟蹤分為消失點(diǎn)的跟蹤和車道線的跟蹤。

(1) 消失點(diǎn)的跟蹤: 消失點(diǎn)一般較遠(yuǎn), 車輛在行進(jìn)過程中消失點(diǎn)范圍變化不是很大,而靠近車道線的道路兩邊由于車輛輪胎接觸較為頻繁, 紋理較為明顯, 對(duì)消失點(diǎn)的貢獻(xiàn)較大。因此, 隨機(jī)選取靠近車道線兩邊100 個(gè)點(diǎn)對(duì)消失點(diǎn)及其周圍的若干個(gè)點(diǎn)( 本文選取36 個(gè)點(diǎn)) 進(jìn)行投票,如圖8 所示。

 

 

(2)車道線跟蹤:根據(jù)上一幀測(cè)量的結(jié)果,限定角度在一定變化范圍內(nèi)(本文限制在10°范圍,如圖8(b)所示)進(jìn)行Hough變換,這樣大大減少了運(yùn)算速度。當(dāng)圖像檢測(cè)的消失點(diǎn)及車道線上的點(diǎn)少于所設(shè)定的閾值時(shí),程序重新初始化。

4 車道識(shí)別

本文在應(yīng)用的基礎(chǔ)上對(duì)合肥以及沈陽的BRT車道進(jìn)行統(tǒng)計(jì),其BRT車道相對(duì)其他車道具有如下特點(diǎn):其左右車道線都為黃色,一般位于路的兩邊,道路的兩邊有欄桿或者路牙等特征?;诖颂攸c(diǎn),本文實(shí)現(xiàn)了BRT車道的識(shí)別系統(tǒng),結(jié)合GPS判斷其所在位置范圍內(nèi)有無BRT車道,若有則判斷車道線顏色是否為黃色,即建立顏色模型,對(duì)車道線上的每一點(diǎn)顏色進(jìn)行標(biāo)記,并綜合判斷其左右車道線是否是黃色車道線,對(duì)黃色進(jìn)行標(biāo)記,如圖9左圖所示。由于車道線長期受到磨損有一定的失真,且在晚上黃光燈照射下不易準(zhǔn)確地識(shí)別顏色,本文結(jié)合其欄桿、路牙等特征識(shí)別車道,對(duì)檢測(cè)的車道線兩邊的一定區(qū)域(圖9右圖白色矩形區(qū)域)進(jìn)行對(duì)比,比較其顏色邊緣紋理等特征差別。通過大量的測(cè)試,本文得到了判斷其是否為BRT車道的先驗(yàn)閾值,當(dāng)矩形區(qū)域差別大于設(shè)定閾值時(shí),則判斷為公交專用車道,從而準(zhǔn)確實(shí)現(xiàn)車道檢測(cè)。

 

5 實(shí)驗(yàn)結(jié)果與分析

實(shí)現(xiàn)BRT 車道識(shí)別的具體流程如圖10 所示。

 

 

本文首先通過GPS采集車輛所在區(qū)域的經(jīng)緯度信息, 并建立道路經(jīng)緯度信息庫判斷車輛所在位置附近是否具備BRT專用車道,若有,則進(jìn)行車道線檢測(cè),找到車輛所在車道的左右車道線,并判斷車道線上顏色信息以及車道線左右的邊緣亮度等信息,分析其是否具備BRT快速公交車道的特征,如具備,則可以作為監(jiān)控前方車輛是否違規(guī)駛?cè)隑RT車道的一個(gè)依據(jù)。[!--empirenews.page--]

 

 

6 改進(jìn)應(yīng)用

該模型不僅適用于公路等有車道線的結(jié)構(gòu)化道路,也可適用于車轍痕跡較為清晰的鄉(xiāng)間土路、沒有車道線的柏油路等非結(jié)構(gòu)化道路, 能夠較為準(zhǔn)確地檢測(cè)道路的消失點(diǎn)。當(dāng)車輛行進(jìn)方向偏離其消失點(diǎn)時(shí), 提醒司機(jī)采取相應(yīng)的措施, 從而實(shí)現(xiàn)了車道偏離預(yù)警, 可以有效地抑制事故的發(fā)生。圖12 為對(duì)白色區(qū)域進(jìn)行Gabor 卷積運(yùn)算, 將卷積結(jié)果較大( 即能量較大) 的點(diǎn)的方向繪制出來, 如圖12 右圖所示??梢钥闯?, 方向基本指向道路的消失點(diǎn)。圖13 為復(fù)雜道路的消失點(diǎn), 其中圓圈表示消失點(diǎn)投票結(jié)果。

 

 

 

 

本文對(duì)合肥公交專用車道進(jìn)行了大量的實(shí)驗(yàn),實(shí)驗(yàn)結(jié)果表明,該算法具有很強(qiáng)的適用性,能夠準(zhǔn)確地檢測(cè)到車輛所在車道的車道線,并對(duì)其車道作出正確的判斷。車道識(shí)別結(jié)果如圖11所示。

本文提出了基于道路紋理特征的車道線檢測(cè)方法,將直線模型算法成功移植到DM6437開發(fā)平臺(tái)。通過攝像頭實(shí)時(shí)采集道路圖像(25 S/s,圖像大小為720×576),實(shí)時(shí)統(tǒng)計(jì)車道線信息,并在城市道路上進(jìn)行了大量的實(shí)驗(yàn)測(cè)試,平均每幀圖像的算法耗時(shí)控制在50 ms以內(nèi),能夠較為準(zhǔn)確地檢測(cè)出車道線的位置,具有較強(qiáng)的實(shí)時(shí)性和魯棒性。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動(dòng)電源

在工業(yè)自動(dòng)化蓬勃發(fā)展的當(dāng)下,工業(yè)電機(jī)作為核心動(dòng)力設(shè)備,其驅(qū)動(dòng)電源的性能直接關(guān)系到整個(gè)系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動(dòng)勢(shì)抑制與過流保護(hù)是驅(qū)動(dòng)電源設(shè)計(jì)中至關(guān)重要的兩個(gè)環(huán)節(jié),集成化方案的設(shè)計(jì)成為提升電機(jī)驅(qū)動(dòng)性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機(jī) 驅(qū)動(dòng)電源

LED 驅(qū)動(dòng)電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個(gè)照明設(shè)備的使用壽命。然而,在實(shí)際應(yīng)用中,LED 驅(qū)動(dòng)電源易損壞的問題卻十分常見,不僅增加了維護(hù)成本,還影響了用戶體驗(yàn)。要解決這一問題,需從設(shè)計(jì)、生...

關(guān)鍵字: 驅(qū)動(dòng)電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動(dòng)電源的公式,電感內(nèi)電流波動(dòng)大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計(jì) 驅(qū)動(dòng)電源

電動(dòng)汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動(dòng)汽車的核心技術(shù)之一是電機(jī)驅(qū)動(dòng)控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機(jī)驅(qū)動(dòng)系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動(dòng)汽車的動(dòng)力性能和...

關(guān)鍵字: 電動(dòng)汽車 新能源 驅(qū)動(dòng)電源

在現(xiàn)代城市建設(shè)中,街道及停車場(chǎng)照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進(jìn)步,高亮度白光發(fā)光二極管(LED)因其獨(dú)特的優(yōu)勢(shì)逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動(dòng)電源 LED

LED通用照明設(shè)計(jì)工程師會(huì)遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動(dòng)電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動(dòng)電源的電磁干擾(EMI)問題成為了一個(gè)不可忽視的挑戰(zhàn)。電磁干擾不僅會(huì)影響LED燈具的正常工作,還可能對(duì)周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動(dòng)電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機(jī)重量也有所下降,所以,現(xiàn)在的LED驅(qū)動(dòng)電源

關(guān)鍵字: LED 驅(qū)動(dòng)電源 開關(guān)電源

LED驅(qū)動(dòng)電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動(dòng)LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動(dòng)電源
關(guān)閉