www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當(dāng)前位置:首頁(yè) > 單片機(jī) > 單片機(jī)
[導(dǎo)讀]這次的平衡車,使用到了卡爾曼濾波,下面談?wù)勈褂眯牡梦覀兪抢媒撬俣葌鞲衅骱图铀俣葌鞲衅鳒y(cè)量得到角度和角速度,但是由于車子是運(yùn)動(dòng)的,我們利用加速度得到的角度并不完全正確,由于噪聲干擾,我們對(duì)角速度傳感器

這次的平衡車,使用到了卡爾曼濾波,下面談?wù)勈褂眯牡?/p>

我們是利用角速度傳感器和加速度傳感器測(cè)量得到角度和角速度,但是由于車子是運(yùn)動(dòng)的,我們利用加速度得到的角度并不完全正確,由于噪聲干擾,我們對(duì)角速度傳感器的測(cè)量值也存在懷疑。于是我們就要進(jìn)行濾波,通過(guò)兩個(gè)傳感器數(shù)值上的相互關(guān)系來(lái)得到我們想要的結(jié)果。我們使用卡爾曼濾波器連接這兩個(gè)測(cè)量值。

首先開(kāi)感性的理解一下卡爾曼,引用網(wǎng)上(百度百科)的經(jīng)典解釋:

在介紹他的5條公式之前,先讓我們來(lái)根據(jù)下面的例子一步一步的探索。

假 設(shè)我們要研究的對(duì)象是一個(gè)房間的溫度。根據(jù)你的經(jīng)驗(yàn)判斷,這個(gè)房間的溫度是恒定的,也就是下一分鐘的溫度等于現(xiàn)在這一分鐘的溫度(假設(shè)我們用一分鐘來(lái)做時(shí) 間單位)。假設(shè)你對(duì)你的經(jīng)驗(yàn)不是100%的相信,可能會(huì)有上下偏差幾度。我們把這些偏差看成是高斯白噪聲(White Gaussian Noise),也就是這些偏差跟前后時(shí)間是沒(méi)有關(guān)系的而且符合高斯分配(Gaussian Distribution)。另外,我們?cè)诜块g里放一個(gè)溫度計(jì),但是這個(gè)溫度計(jì)也不準(zhǔn)確的,測(cè)量值會(huì)比實(shí)際值偏差。我們也把這些偏差看成是高斯白噪聲。

好了,現(xiàn)在對(duì)于某一分鐘我們有兩個(gè)有關(guān)于該房間的溫度值:你根據(jù)經(jīng)驗(yàn)的預(yù)測(cè)值(系統(tǒng)的預(yù)測(cè)值)和溫度計(jì)的值(測(cè)量值)。下面我們要用這兩個(gè)值結(jié)合他們各自的噪聲來(lái)估算出房間的實(shí)際溫度值。

假 如我們要估算k時(shí)刻的是實(shí)際溫度值。首先你要根據(jù)k-1時(shí)刻的溫度值,來(lái)預(yù)測(cè)k時(shí)刻的溫度。因?yàn)槟阆嘈艤囟仁呛愣ǖ?,所以你?huì)得到k時(shí)刻的溫度預(yù)測(cè)值是跟 k-1時(shí)刻一樣的,假設(shè)是23度,同時(shí)該值的高斯噪聲的偏差是5度(5是這樣得到的:如果k-1時(shí)刻估算出的最優(yōu)溫度值的偏差是3,你對(duì)自己預(yù)測(cè)的不確定 度是4度,他們平方相加再開(kāi)方,就是5)。然后,你從溫度計(jì)那里得到了k時(shí)刻的溫度值,假設(shè)是25度,同時(shí)該值的偏差是4度。

由于我們用 于估算k時(shí)刻的實(shí)際溫度有兩個(gè)溫度值,分別是23度和25度。究竟實(shí)際溫度是多少呢?相信自己還是相信溫度計(jì)呢?究竟相信誰(shuí)多一點(diǎn),我們可以用他們的 covariance來(lái)判斷。因?yàn)镵g^2=5^2/(5^2+4^2),所以Kg=0.78,我們可以估算出k時(shí)刻的實(shí)際溫度值是:23+0.78* (25-23)=24.56度??梢钥闯?,因?yàn)闇囟扔?jì)的covariance比較小(比較相信溫度計(jì)),所以估算出的最優(yōu)溫度值偏向溫度計(jì)的值。

現(xiàn) 在我們已經(jīng)得到k時(shí)刻的最優(yōu)溫度值了,下一步就是要進(jìn)入k+1時(shí)刻,進(jìn)行新的最優(yōu)估算。到現(xiàn)在為止,好像還沒(méi)看到什么自回歸的東西出現(xiàn)。對(duì)了,在進(jìn)入 k+1時(shí)刻之前,我們還要算出k時(shí)刻那個(gè)最優(yōu)值(24.56度)的偏差。算法如下:((1-Kg)*5^2)^0.5=2.35。這里的5就是上面的k時(shí) 刻你預(yù)測(cè)的那個(gè)23度溫度值的偏差,得出的2.35就是進(jìn)入k+1時(shí)刻以后k時(shí)刻估算出的最優(yōu)溫度值的偏差(對(duì)應(yīng)于上面的3)。

就是這樣,卡爾曼濾波器就不斷的把covariance遞歸,從而估算出最優(yōu)的溫度值。他運(yùn)行的很快,而且它只保留了上一時(shí)刻的covariance。上面的Kg,就是卡爾曼增益(Kalman Gain)。他可以隨不同的時(shí)刻而改變他自己的值,是不是很神奇!

然后看看我們的代碼,代碼來(lái)自網(wǎng)絡(luò),使用的是ouravr某大牛的代碼

#include "Kalman.h"

float Q_angle=0.001, Q_gyro=0.003, R_angle=0.5, dt=0.005;

//注意:dt的取值為kalman濾波器采樣時(shí)間;

float P[2][2] = {

{ 1, 0 },

{ 0, 1 }

};

float Pdot[4] ={0,0,0,0};

const char C_0 = 1;

float q_bias, angle_err, PCt_0, PCt_1, E, K_0, K_1, t_0, t_1;

//-------------------------------------------------------

void Kalman_Filter(float angle_m,float gyro_m) //gyro_m:gyro_measure

{

angle+=(gyro_m-q_bias) * dt;//先驗(yàn)估計(jì)

Pdot[0]=Q_angle - P[0][1] - P[1][0];// Pk-' 先驗(yàn)估計(jì)誤差協(xié)方差的微分

Pdot[1]=- P[1][1];

Pdot[2]=- P[1][1];

Pdot[3]=Q_gyro;

P[0][0] += Pdot[0] * dt;// Pk- 先驗(yàn)估計(jì)誤差協(xié)方差微分的積分 = 先驗(yàn)估計(jì)誤差協(xié)方差

P[0][1] += Pdot[1] * dt;

P[1][0] += Pdot[2] * dt;

P[1][1] += Pdot[3] * dt;

angle_err = angle_m - angle;//zk-先驗(yàn)估計(jì)

PCt_0 = C_0 * P[0][0];

PCt_1 = C_0 * P[1][0];

E = R_angle + C_0 * PCt_0;

K_0 = PCt_0 / E;//Kk

K_1 = PCt_1 / E;

t_0 = PCt_0;

t_1 = C_0 * P[0][1];

P[0][0] -= K_0 * t_0;//后驗(yàn)估計(jì)誤差協(xié)方差

P[0][1] -= K_0 * t_1;

P[1][0] -= K_1 * t_0;

P[1][1] -= K_1 * t_1;

angle += K_0 * angle_err;//后驗(yàn)估計(jì)

q_bias += K_1 * angle_err;//后驗(yàn)估計(jì)

angle_dot = gyro_m-q_bias;//輸出值(后驗(yàn)估計(jì))的微分 = 角速度

}

我們一個(gè)個(gè)語(yǔ)句進(jìn)行解釋

angle+=(gyro_m-q_bias) * dt

首先我們要利用系統(tǒng)的過(guò)程模型,來(lái)預(yù)測(cè)下一狀態(tài)的系統(tǒng)。假設(shè)現(xiàn)在的系統(tǒng)狀態(tài)是k,根據(jù)系統(tǒng)的模型,可以基于系統(tǒng)的上一狀態(tài)而預(yù)測(cè)出現(xiàn)在狀態(tài):

X(k|k-1)=A X(k-1|k-1)+B U(k) ……….. (1)

我們的矩陣X為:

(angle

gyro)

我們的矩陣A為:

( 1 1

0 1)

要注意的是我們得到的是X(k|k-1)!!這可不是我們要的結(jié)果

然后是

Pdot[0]=Q_angle - P[0][1] - P[1][0];// Pk-' 先驗(yàn)估計(jì)誤差協(xié)方差的微分

Pdot[1]=- P[1][1];

Pdot[2]=- P[1][1];

Pdot[3]=Q_gyro;

P[0][0] += Pdot[0] * dt;// Pk- 先驗(yàn)估計(jì)誤差協(xié)方差微分的積分 = 先驗(yàn)估計(jì)誤差協(xié)方差

P[0][1] += Pdot[1] * dt;

P[1][0] += Pdot[2] * dt;

P[1][1] += Pdot[3] * dt;

這8句一起進(jìn)行解釋

到現(xiàn)在為止,我們的系統(tǒng)結(jié)果已經(jīng)更新了,可是,對(duì)應(yīng)于X(k|k-1)的covariance還沒(méi)更新。我們用P表示covariance:

P(k|k-1)=A P(k-1|k-1) A’+Q ……… (2)

Pdot是P的微分。

我們的Q是

(Q_angle 0

0 Q_gyro)

積分后協(xié)方差就算出來(lái)了,同樣注意也是P(k|k-1)。具體怎么算~~~好吧我承認(rèn)我線代沒(méi)有學(xué)好~~~算了好久。。。。

angle_err = angle_m - angle;//這句好像沒(méi)有必要說(shuō)~~

接下來(lái)算卡爾曼增益:

PCt_0 = C_0 * P[0][0];

PCt_1 = C_0 * P[1][0];

E = R_angle + C_0 * PCt_0;

K_0 = PCt_0 / E;

K_1 = PCt_1 / E;

Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R)

H是測(cè)量系統(tǒng)的矩陣,為(1

1)

t_0 = PCt_0;

t_1 = C_0 * P[0][1];

P[0][0] -= K_0 * t_0;//后驗(yàn)估計(jì)誤差協(xié)方差

P[0][1] -= K_0 * t_1;

P[1][0] -= K_1 * t_0;

P[1][1] -= K_1 * t_1;

到現(xiàn)在為止,我們已經(jīng)得到了k狀態(tài)下最優(yōu)的估算值X(k|k)。但是為了要另卡爾曼濾波器不斷的運(yùn)行下去直到系統(tǒng)過(guò)程結(jié)束,我們還要更新k狀態(tài)下X(k|k)的covariance:

P(k|k)=(I-Kg(k) H)P(k|k-1) ……… (5)

這個(gè)很好理解了~~I是單位矩陣不多說(shuō)鳥(niǎo)~~

angle += K_0 * angle_err;//后驗(yàn)估計(jì)

q_bias += K_1 * angle_err;//后驗(yàn)估計(jì)

angle_dot = gyro_m-q_bias;//輸出值(后驗(yàn)估計(jì))的微分 = 角速度

現(xiàn)在我們有了現(xiàn)在狀態(tài)的預(yù)測(cè)結(jié)果,然后我們?cè)偈占F(xiàn)在狀態(tài)的測(cè)量值。結(jié)合預(yù)測(cè)值和測(cè)量值,我們可以得到現(xiàn)在狀態(tài)(k)的最優(yōu)化估算值X(k|k):

X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) ……… (3)

觀察一下K_1計(jì)算過(guò)程,再聯(lián)系到協(xié)方差矩陣的性質(zhì)就可以知道為什么角速度偏差量用P[1][0]算了~~

至于stm32上跑的速度,72M下這段代碼執(zhí)行時(shí)間在0.5毫秒內(nèi),速度不是問(wèn)題~~

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動(dòng)電源

在工業(yè)自動(dòng)化蓬勃發(fā)展的當(dāng)下,工業(yè)電機(jī)作為核心動(dòng)力設(shè)備,其驅(qū)動(dòng)電源的性能直接關(guān)系到整個(gè)系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動(dòng)勢(shì)抑制與過(guò)流保護(hù)是驅(qū)動(dòng)電源設(shè)計(jì)中至關(guān)重要的兩個(gè)環(huán)節(jié),集成化方案的設(shè)計(jì)成為提升電機(jī)驅(qū)動(dòng)性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機(jī) 驅(qū)動(dòng)電源

LED 驅(qū)動(dòng)電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個(gè)照明設(shè)備的使用壽命。然而,在實(shí)際應(yīng)用中,LED 驅(qū)動(dòng)電源易損壞的問(wèn)題卻十分常見(jiàn),不僅增加了維護(hù)成本,還影響了用戶體驗(yàn)。要解決這一問(wèn)題,需從設(shè)計(jì)、生...

關(guān)鍵字: 驅(qū)動(dòng)電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動(dòng)電源的公式,電感內(nèi)電流波動(dòng)大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計(jì) 驅(qū)動(dòng)電源

電動(dòng)汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動(dòng)汽車的核心技術(shù)之一是電機(jī)驅(qū)動(dòng)控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機(jī)驅(qū)動(dòng)系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動(dòng)汽車的動(dòng)力性能和...

關(guān)鍵字: 電動(dòng)汽車 新能源 驅(qū)動(dòng)電源

在現(xiàn)代城市建設(shè)中,街道及停車場(chǎng)照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進(jìn)步,高亮度白光發(fā)光二極管(LED)因其獨(dú)特的優(yōu)勢(shì)逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動(dòng)電源 LED

LED通用照明設(shè)計(jì)工程師會(huì)遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動(dòng)電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動(dòng)電源的電磁干擾(EMI)問(wèn)題成為了一個(gè)不可忽視的挑戰(zhàn)。電磁干擾不僅會(huì)影響LED燈具的正常工作,還可能對(duì)周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來(lái)解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動(dòng)電源

開(kāi)關(guān)電源具有效率高的特性,而且開(kāi)關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機(jī)重量也有所下降,所以,現(xiàn)在的LED驅(qū)動(dòng)電源

關(guān)鍵字: LED 驅(qū)動(dòng)電源 開(kāi)關(guān)電源

LED驅(qū)動(dòng)電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動(dòng)LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動(dòng)電源
關(guān)閉