www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當(dāng)前位置:首頁(yè) > 汽車電子 > 汽車電子
[導(dǎo)讀]   一位已退休的長(zhǎng)輩(他可是一位化學(xué)博士)經(jīng)常告誡我,“了解得越多,所知越有限”(the more we know, the less we know)。  由于我們不斷地克服以往的一些技術(shù)障礙,整個(gè)系統(tǒng)正變得越來越

  一位已退休的長(zhǎng)輩(他可是一位化學(xué)博士)經(jīng)常告誡我,“了解得越多,所知越有限”(the more we know, the less we know)。

  由于我們不斷地克服以往的一些技術(shù)障礙,整個(gè)系統(tǒng)正變得越來越復(fù)雜,同時(shí)也更加的不可預(yù)測(cè)。

  ·最近的一個(gè)例子是來自美國(guó)國(guó)道交通安全管理局(NHTSA)和美國(guó)太空總署(NASA)工程與安全中心(NESC)針對(duì)豐田(Toyota)汽車突然加速事件的安全性調(diào)查報(bào)告。對(duì)此,EETimes記者M(jìn)ichael Barr先前已發(fā)表過詳實(shí)的報(bào)導(dǎo)。簡(jiǎn)單來說,NASA表示無法確認(rèn)但也不排除軟件問題是造成豐田汽車不正常加速的罪魁禍?zhǔn)住?/p>

  ·Green Hills公司技術(shù)長(zhǎng)Dave Kleidermacher曾經(jīng)在博客上討論使智能手機(jī)更安全可靠的平臺(tái)。透過全國(guó)性電視廣告來宣傳以手機(jī)遠(yuǎn)距離發(fā)動(dòng)汽車是如何地不可思議──這難道是只有我一個(gè)人還是大家都覺得一整個(gè)方式十分愚蠢呢?不過,十多歲的青少年或是像美國(guó)黑帽樂隊(duì)(Black Hat)才會(huì)欣賞這種方式吧!

  ·紐約時(shí)報(bào)(The New York Times)先前發(fā)布過有關(guān)駭客入侵時(shí)代廣場(chǎng)(TimesSquare)電子看板的訊息。第一則駭客的行為最后被發(fā)現(xiàn)只是一種為電影宣傳的手法──實(shí)際上只是網(wǎng)路上流傳的一則YouTube短片,而第二則可是真正以手機(jī)控制了這些電視屏幕,只不過時(shí)間有點(diǎn)短罷了。

  ·史丹佛大學(xué)大學(xué)在其Facebook頁(yè)面上描述了工程師們?nèi)绾谓鉀Q復(fù)雜且無法預(yù)測(cè)的“氣動(dòng)彈性顫振”(aeroelastic flutter)問題。(小心!如果你剛好在飛機(jī)上用WiFi看這則文章的話,千萬別點(diǎn)選觀看這則視訊短片。)

 

  何去何從?

 

  軟件(和硬件)越復(fù)雜,就越難為其定型或找到極端案例(corner case)。我們對(duì)于已知的“未知”似乎就已經(jīng)難以進(jìn)行評(píng)估了,至于如何預(yù)測(cè)不可知的未知,當(dāng)然就更加完全一無所知。

  我們只知道競(jìng)相攀爬莫測(cè)高深的“抽象階梯”(abstraction ladder),以期擁抱設(shè)計(jì)復(fù)雜性,但卻也制造了不少問題。我最近參加了在鳳凰城(Phoenix,AZ)所舉行的大學(xué)工程系年會(huì),會(huì)中有一位來自業(yè)界的提問人在一群學(xué)術(shù)界人士為主的座談上直搖頭──能夠培養(yǎng)出了解理論又會(huì)處理抽象問題的真正聰明學(xué)生固然不錯(cuò),但如果他們?nèi)狈こ虒W(xué)的基本概念,將來進(jìn)入業(yè)界后,公司還是必須重新訓(xùn)練或再教育他們。

  在預(yù)測(cè)不可知的未知世界時(shí),我們?nèi)绾巫龅酶??有一種正規(guī)的方法可循嗎?難道不可能嗎?

 

1  2  

Original:

 

  The uncertainty principle

 

  --The Article is quoted from Brian Fuller''s Blog 

 

  In his dotage, my old man (a chemistry Ph.D) used to say, as he slowly stirred his martini with a crooked finger, “the more we know, the less we know.”

  As systems become increasingly complex because we overcome old technological hurdles, they also become more unpredictable.

  One recent example is report that NHTSA and the NASA Engineering and Safety Center (NESC) published regarding unintended acceleration of Toyota automobiles. Michael Barr has an excellent report on it. In short, NASA said it couldn’t rule in but couldn’t rule out software problems as a culprit in the unintended acceleration problem.

  Dave Kleidermacher blogged about making smart phones trustworthy platforms. Is it just me or is it complete lunacy to run a national TV advertising campaign touting the wonders of starting your car remotely with a cell phone? Your teenage daughter may appreciate the gesture but so too do legions of black hats. (See Kleidermacher’s earlier post on smart phones and security.

  The New York Times had a pair of posts this week about hacking a Times Square video screen. The first hacking attempt turned out to be a hoax but a really popular YouTube video; the second a real attempt that came up a bit short.

  And Stanford, via its Facebook page, has described how engineers are addressing the “aeroelastic flutter” problem, a complicated, unpredictable phenomenon. (P.S. don‘t watch this video if you happen to be on a plane with WiFi)。

  What’s ahead?

  The more complex the software (and hardware), the harder it is to model and find corner cases. We seem to be falling behind in assessing the known unknowns and we’re completely in the dark about how to approach unknown unknowns.

  We race up the abstraction ladder to try to keep our arms around design complexity, but that creates other issues. I attended the annual meeting of college engineering departments recently in Phoenix and one questioner from industry stood before a panel of academics shaking his head. It’s great to turn out really smart kids who know theory and can deal with abstraction, but if they struggle with basic engineering concepts, companies need to train (or retrain, perhaps) them.

  How are we going to get better at anticipating the unknown unknowns? It is formal methods? It is impossible?

 

1  2  
本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動(dòng)電源

在工業(yè)自動(dòng)化蓬勃發(fā)展的當(dāng)下,工業(yè)電機(jī)作為核心動(dòng)力設(shè)備,其驅(qū)動(dòng)電源的性能直接關(guān)系到整個(gè)系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動(dòng)勢(shì)抑制與過流保護(hù)是驅(qū)動(dòng)電源設(shè)計(jì)中至關(guān)重要的兩個(gè)環(huán)節(jié),集成化方案的設(shè)計(jì)成為提升電機(jī)驅(qū)動(dòng)性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機(jī) 驅(qū)動(dòng)電源

LED 驅(qū)動(dòng)電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個(gè)照明設(shè)備的使用壽命。然而,在實(shí)際應(yīng)用中,LED 驅(qū)動(dòng)電源易損壞的問題卻十分常見,不僅增加了維護(hù)成本,還影響了用戶體驗(yàn)。要解決這一問題,需從設(shè)計(jì)、生...

關(guān)鍵字: 驅(qū)動(dòng)電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動(dòng)電源的公式,電感內(nèi)電流波動(dòng)大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計(jì) 驅(qū)動(dòng)電源

電動(dòng)汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動(dòng)汽車的核心技術(shù)之一是電機(jī)驅(qū)動(dòng)控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機(jī)驅(qū)動(dòng)系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動(dòng)汽車的動(dòng)力性能和...

關(guān)鍵字: 電動(dòng)汽車 新能源 驅(qū)動(dòng)電源

在現(xiàn)代城市建設(shè)中,街道及停車場(chǎng)照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進(jìn)步,高亮度白光發(fā)光二極管(LED)因其獨(dú)特的優(yōu)勢(shì)逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動(dòng)電源 LED

LED通用照明設(shè)計(jì)工程師會(huì)遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動(dòng)電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動(dòng)電源的電磁干擾(EMI)問題成為了一個(gè)不可忽視的挑戰(zhàn)。電磁干擾不僅會(huì)影響LED燈具的正常工作,還可能對(duì)周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動(dòng)電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機(jī)重量也有所下降,所以,現(xiàn)在的LED驅(qū)動(dòng)電源

關(guān)鍵字: LED 驅(qū)動(dòng)電源 開關(guān)電源

LED驅(qū)動(dòng)電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動(dòng)LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動(dòng)電源
關(guān)閉