電源芯片的選擇
說到電源,先要說的就是DC-DC和LDO兩種電源芯片的選擇。兩種電源的優(yōu)缺點都非常明顯。DC-DC最大的優(yōu)點就是效率高,可以輸出大電流,電源效率普遍能夠做到百分之九十左右,有些甚至可以達到九十五以上。缺點也比較明顯,需要用到的外圍器件多,所占PCB面積大,成本高,由于開關的存在濾波控制不好的話會給系統(tǒng)引入噪聲等等。LDO則正好相反,外圍器件簡單,占用面積小,成本低,沒有開關,輸出電源的線性度更好,但是效率取決于輸入和輸出電壓的壓差,壓差大效率就低。通過比較我們可以大致做出電源的選擇。如果電源壓差較小,或者電流較小,使用LDO是個不錯的選擇。如果壓差較大,或者電流較大,那么一般會推薦使用DC-DC。
LDO電源設計簡單,成本低,外圍電路一般只需要幾顆旁路電容就夠了。雖然設計簡單,但還是有些具體的地方需要注意。
第一個要考慮的就是散熱
由于LDO的特性決定,壓差部分的功耗是要通過芯片本身的散熱釋放出去的。如果壓差和電流較大,那么器件上消耗的功耗就會比較大,散熱我們就不能不考慮。舉例說明,如果我們用3.3V通過LDO降壓到1.2V,電流是800mA,那么芯片上消耗的功率就是(3.3-1.2)*0.8=1.68W,這么大的功率消耗,如果在PCB設計的時候沒有留下足夠的散熱空間,那么隨著系統(tǒng)的運行,LDO芯片就會越來越燙。雖然很多LDO的截止溫度能達到125度,但是長時間在高溫下運行,會嚴重影響系統(tǒng)壽命。調試階段也難免會燙傷到自己。為了系統(tǒng)和自身的安全,保證LDO的良好散熱是我們在做PCB的時候要考慮到的問題,又是我們容易忽略的地方。
第二個要考慮的是LDO器件的壓差
以我們常用的1117為例,能做到的最小壓差是1V。那么如果我們要用3.3V降壓到2.5V選擇1117是不合適的。得到的結果只能是2.3V左右,還要和你的電流有關。當然現在新出的LDO在壓差方面有了很大的改進,最小壓降有些已經做到了100mV,能滿足大多數應用的需求。
第三個要考慮的是旁路電容的選擇
LDO芯片的外圍電路就是幾顆旁路電容。這幾顆電容的選擇也要參考器件的Datasheet,一般都會有容量和型號的推薦。還是以1117為例,各家公司推出的1117雖然功能差不多,但是在輸出旁路電容的選擇上也會有所區(qū)別,有些要求輸出旁路電容采用10UF以上的鉭電容,如果采用電解電容則容量要求更高,有些要求電容的ESR大小在一定范圍,已獲得更好的高頻響應。這些細節(jié)是我們在選擇器件的時候需要認真在datasheet里面找答案的。
DC-DC的應用比LDO要稍微復雜一些,需要注意的地方也更多。我們先來看看走線對電路尤其是對電源電路的影響。PCB上的走線都會存在一定的走線電感,根據走線的寬度,厚度,和幾何形狀的不同,走線電感也會不同。一個簡單的經驗值是1oz的銅厚,30mil的走線寬度,1inch的走線長度的走線電感大約為20nH。這個電感值似乎并不大,但我們來看看在電源芯片上產生的影響。DC-DC通常都會應用在大電流的應用場景。我們來假設一個2A的應用環(huán)境。DC-DC要能夠保證系統(tǒng)從0A到2A之間電流需求的供應。那么1inch長度的走線會使電壓產生多大的偏移,我們可以帶入下面的計算公式:
V=L*di/dt
其中L是走線電感,di是電流變化量,dt是開關轉換速度。DC-DC的開關轉換速度一般可以取值30ns來計算。帶入公式我們可以得出V=20nH*2A/30ns=1.33V!