www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當前位置:首頁 > 電源 > 功率器件
[導讀]同步整流技術(shù)是采用通態(tài)電阻極低的功率MOSFET來取代整流二極管,因此能大大降低整流器的損耗,提高DC/DC變換器的效率,滿足低壓、大電流整流的需要。首先介紹了同步整流的基本原理,然后重點闡述同步整流式DC/DC電源變換器的設計。

    摘要:同步整流技術(shù)是采用通態(tài)電阻極低的功率MOSFET來取代整流二極管,因此能大大降低整流器的損耗,提高DC/DC變換器的效率,滿足低壓、大電流整流的需要。首先介紹了同步整流的基本原理,然后重點闡述同步整流式DC/DC電源變換器的設計。

    關(guān)鍵詞:同步整流;磁復位;箝位電路;DC/DC變換器

1 同步整流技術(shù)概述

近年來隨著電源技術(shù)的發(fā)展,同步整流技術(shù)正在向低電壓、大電流輸出的DC/DC變換器中迅速推廣應用。DC/DC變換器的損耗主要由3部分組成:功率開關(guān)管的損耗,高頻變壓器的損耗,輸出端整流管的損耗。在低電壓、大電流輸出的情況下,整流二極管的導通壓降較高,輸出端整流管的損耗尤為突出??旎謴投O管(FRD)或超快恢復二極管(SRD)可達1.0~1.2V,即使采用低壓降的肖特基二極管(SBD),也會產(chǎn)生大約0.6V的壓降,這就導致整流損耗增大,電源效率降低。舉例說明,目前筆記本電腦普遍采用3.3V甚至1.8V或1.5V的供電電壓,所消耗的電流可達20A。此時超快恢復二極管的整流損耗已接近甚至超過電源輸出功率的50%。即使采用肖特基二極管,整流管上的損耗也會達到(18%~40%)PO,占電源總損耗的60%以上。因此,傳統(tǒng)的二極管整流電路已無法滿足實現(xiàn)低電壓、大電流開關(guān)電源高效率及小體積的需要,成為制約DC/DC變換器提高效率的瓶頸。

同步整流是采用通態(tài)電阻極低的專用功率MOSFET,來取代整流二極管以降低整流損耗的一項新技術(shù)。它能大大提高DC/DC變換器的效率并且不存在由肖特基勢壘電壓而造成的死區(qū)電壓。功率MOSFET屬于電壓控制型器件,它在導通時的伏安特性呈線性關(guān)系。用功率MOSFET做整流器時,要求柵極電壓必須與被整流電壓的相位保持同步才能完成整流功能,故稱之為同步整流。

    為滿足高頻、大容量同步整流電路的需要,近1同步整流技術(shù)概述近年來隨著電源技術(shù)的發(fā)展,同步整流技術(shù)正在向低電壓、大電流輸出的DC/DC變換器中迅速推廣應用。DC/DC變換器的損耗主要由3部分組成:功率開關(guān)管的損耗,高頻變壓器的損耗,輸出端整流管的損耗。在低電壓、大電流輸出的情況下,整流二極管的導通壓降較高,輸出端整流管的損耗尤為突出??旎謴投O管(FRD)或超快恢復二極管(SRD)可達1.0~1.2V,即使采用低壓降的肖特基二極管(SBD),也會產(chǎn)生大約0.6V的壓降,這就導致整流損耗增大,電源效率降低。舉例說明,目前筆記本電腦普遍采用3.3V甚至1.8V或1.5V的供電電壓,所消耗的電流可達20A。此時超快恢復二極管的整流損耗已接近甚至超過電源輸出功率的50%。即使采用肖特基二極管,整流管上的損耗也會達到(18%~40%)PO,占電源總損耗的60%以上。因此,傳統(tǒng)的二極管整流電路已無法滿足實現(xiàn)低電壓、大電流開關(guān)電源高效率及小體積的需要,成為制約DC/DC變換器提高效率的瓶頸。

同步整流是采用通態(tài)電阻極低的專用功率MOSFET,來取代整流二極管以降低整流損耗的一項新技術(shù)。它能大大提高DC/DC變換器的效率并且不存在由肖特基勢壘電壓而造成的死區(qū)電壓。功率MOSFET屬于電壓控制型器件,它在導通時的伏安特性呈線性關(guān)系。用功率MOSFET做整流器時,要求柵極電壓必須與被整流電壓的相位保持同步才能完成整流功能,故稱之為同步整流。

為滿足高頻、大容量同步整流電路的需要,近年來一些專用功率MOSFET不斷問世,典型產(chǎn)品有FAIRCHILD公司生產(chǎn)的NDS8410型N溝道功率MOSFET,其通態(tài)電阻為0.015Ω。Philips公司生產(chǎn)的SI4800型功率MOSFET是采用TrenchMOSTM技術(shù)制成的,其通、斷狀態(tài)可用邏輯電平來控制,漏-源極通態(tài)電阻僅為0.0155Ω。IR公司生產(chǎn)的IRL3102(20V/61A)、IRL2203S(30V/116A)、IRL3803S(30V/100A)型功率MOSFET,它們的通態(tài)電阻分別為0.013Ω、0.007Ω和0.006Ω,在通過20A電流時的導通壓降還不到0.3V。這些專用功率MOSFET的輸入阻抗高,開關(guān)時間短,現(xiàn)已成為設計低電壓、大電流功率變換器的首選整流器件。

    最近,國外IC廠家還開發(fā)出同步整流集成電路(SRIC)。例如,IR公司最近推出的IR1176就是一種專門用于驅(qū)動N溝道功率MOSFET的高速CMOS控制器。IR1176可不依賴于初級側(cè)拓撲而單獨運行,并且不需要增加有源箝位(activeclamp)、柵極驅(qū)動補償?shù)葟碗s電路。IR1176適用于輸出電壓在5V以下的大電流DC/DC變換器中的同步整流器,能大大簡化并改善寬帶網(wǎng)服務器中隔離式DC/DC變換器的設計。IR1176配上IRF7822型功率MOSFET,可提高變換器的效率。當輸入電壓為+48V,輸出為+1.8V、40A時,DC/DC變換器的效率可達86%,輸出為1.5V時的效率仍可達到85%。

2 同步整流的基本原理

單端正激、隔離式降壓同步整流器的基本原理如圖1所示,V1及V2為功率MOSFET,在次級電壓的正半周,V1導通,V2關(guān)斷,V1起整流作用;在次級電壓的負半周,V1關(guān)斷,V2導通,V2起到續(xù)流作用。同步整流電路的功率損耗主要包括V1及V2的導通損耗及柵極驅(qū)動損耗。當開關(guān)頻率低于1MHz時,導通損耗占主導地位;開關(guān)頻率高于1MHz時,以柵極驅(qū)動損耗為主。

    2.1 磁復位電路的設計

正激式DC/DC變換器的缺點是在功率管截止期間必須將高頻變壓器復位,以防止變壓器磁芯飽和,因此,一般需要增加磁復位電路(亦稱變壓器復位電路)。圖2示出單端降壓式同步整流器常用的3種磁復位電路:輔助繞組復位電路,R,C,VDZ箝位電路,有源箝位電路。3種磁復位的方法各有優(yōu)缺點:輔助繞組復位法會使變壓器結(jié)構(gòu)復雜化;R,C,VDZ箝位法屬于無源箝位,其優(yōu)點是磁復位電路簡單,能吸收由高頻變壓器漏感而產(chǎn)生的尖峰電壓,但箝位電路本身也要消耗磁場能量;有源箝位法在上述3種方法中的效率最高,但提高了電路的成本。

磁復位要求漏極電壓要高于輸入電壓,但要避免在磁復位過程中使DPA-Switch的漏極電壓超過規(guī)定值,為此,可在次級整流管兩端并聯(lián)一個RS、CS網(wǎng)絡,電路如圖3所示。該電路可使高頻變壓器在每個開關(guān)周期后的能量迅速恢復到一個安全值,保證UD>UI。當DPA-Switch關(guān)斷時,磁感應電流就通過變壓器的次級繞組流出,利用電容CS使磁感應電流減至零。CS的電容量必須足夠小,才能在最短的關(guān)斷時間內(nèi)將磁感應電流衰減到零;但CS的電容量也不能太小,以免漏極電壓超過穩(wěn)壓管的箝位電壓。電阻RS的電阻值應在1~5Ω之間,電阻值過小會與內(nèi)部寄生電感形成自激振蕩。上述磁復位電路適用于40W以下的開關(guān)電源。

    2.2 磁復位電路的校驗

當輸入電壓為最小值或最大值時,要求磁復位電路都能按可控制的范圍將高頻變壓器準確地復位。檢查磁復位情況的最好辦法是觀察DPA-Switch的漏極電壓波形。以圖3所示的磁復位電路為例,當輸入電壓依次為72V、48V和36V時,用示波器觀察到3種磁復位波形分別如圖4所示。

圖4(a)給出了當輸入電壓為72V時的漏極電壓波形。在輸出整流管上并聯(lián)2.2nF的復位電容,可滿足滿載情況下的需要。初級繞組上的箝位電容取47pF。圖中的T表示開關(guān)周期,D為占空比,tON=DT為DPA-Switch的導通時間。在tON時間段,高頻變壓器的正向磁通量增大,漏極電壓達到最小值。在tRZ時間段高頻變壓器被復位,儲存在高頻變壓器中的全部能量接近于零,漏極電壓達到最大值。在tRN時間段,高頻變壓器的負向磁通量增大,此時復位電容和箝位電容向變壓器電感放電。在tVO時間段內(nèi)磁通量保持為負值,此時高頻變壓器初級繞組的電壓為零,這是因為漏極電壓與輸入電壓大小相等(都是72V)而極性相反,互相抵消了。在tVO時間段,負向磁感應電流通過次級繞組。

圖4(b)給出了當直流輸入電壓為48V時的漏極電壓波形。隨著輸入電壓的降低,占空比開始增大。在tRZ及tRN時間段內(nèi)的情況與輸入電壓為72V時的情況相同,但在tVO時間段高頻變壓器中的能量接近于零。

圖5

    圖4(c)給出了當輸入電壓為36V時占空比進一步增大的情況。由于漏極電壓在tRZ階段達到峰值,所以高頻變壓器的磁通量已復位到零。當DPA-Switch開啟時它的漏極電壓在負向磁通區(qū)域內(nèi)。在正常工作情況下漏極電壓的峰值應低于150V。這個漏極峰值電壓是由漏感和電感復位時所提供的。

2.3 箝位電路

當功率MOSFET由導通變成截止時,在開關(guān)電源的一次繞組上就會產(chǎn)生尖峰電壓和感應電壓。其中的尖峰電壓是由高頻變壓器漏感(即漏磁產(chǎn)生的自感)而形成的,它與直流高壓UI和感應電壓UOR疊加后很容易損壞MOSFET。為此,必須增加箝位保護電路,對尖峰電壓進行箝位或吸收。箝位電路分無源箝位、有源箝位兩種。無源箝位電路主要有以下4種設計方案:

1)利用瞬態(tài)電壓抑制器(TVS)和超快恢復二極管(SRD)組成的箝位電路;

2)利用阻容元件和超快恢復二極管組成的R、C、SRD箝位電路;

3)由阻容元件構(gòu)成RC吸收電路;

4)由幾只高壓穩(wěn)壓管串聯(lián)而成的箝位電路,專門對漏-源電壓uDS進行箝位。

上述方案中以1)的保護效果最佳,能充分發(fā)揮TVS響應速度極快、可承受瞬態(tài)高能量脈沖之優(yōu)點,方案2)次之。鑒于壓敏電阻器(VSR)的標稱擊穿電壓值(U1mA)離散性較大,響應速度也比TVS慢很多,在開關(guān)電源中一般不用它構(gòu)成漏極箝位保護電路。

有源箝位DC/DC變換器的電路如圖5所示。因電路中使用了有源器件MOSFET(V4)做箝位管,故稱之為有源箝位電路。CC為箝位電容,V3為主功率開關(guān)管。由圖5可知,當V4導通時因uGS3=0而使V3關(guān)斷。當V4關(guān)斷時uGS3使V3導通,就對由變壓器漏感產(chǎn)生的尖峰電壓起到了箝位作用。

圖6

3 16.5W同步整流式DC/DC電源變換器的設計

下面介紹一種正激、隔離式16.5WDC/DC電源變換器,它采用DPA-Switch系列單片開關(guān)式穩(wěn)壓器DPA424R,直流輸入電壓范圍是36~75V,輸出電壓為3.3V,輸出電流為5A,輸出功率為16.5W。采用400kHz同步整流技術(shù),大大降低了整流器的損耗。當直流輸入電壓為48V時,電源效率η=87%。變換器具有完善的保護功能,包括過電壓/欠電壓保護,輸出過載保護,開環(huán)故障檢測,過熱保護,自動重啟動功能、能限制峰值電流和峰值電壓以避免輸出過沖。

由DPA424R構(gòu)成的16.5W同步整流式DC/DC電源變換器的電路如圖6所示。與分立元器件構(gòu)成的電源變換器相比,可大大簡化電路設計。由C1、L1和C2構(gòu)成輸入端的電磁干擾(EMI)濾波器,可濾除由電網(wǎng)引入的電磁干擾。R1用來設定欠電壓值(UUV)及過電壓值(UOV),取R1=619kΩ時,UUV=619kΩ×50μA+2.35V=33.3V,UOV=619kΩ×135μA+2.5V=86.0V。當輸入電壓過高時R1還能線性地減小最大占空比,防止磁飽和。R3為極限電流設定電阻,取R3=11.1kΩ時,所設定的漏極極限電流I′LIMIT=0.6ILIMIT=0.6×2.50A=1.5A。電路中的穩(wěn)壓管VDZ1(SMBJ150)對漏極電壓起箝位作用,能確保高頻變壓器磁復位。

    該電源采用漏-源通態(tài)電阻極低的SI4800型功率MOSFET做整流管,其最大漏-源電壓UDS(max)=30V,最大柵-源電壓UGS(max)=±20V,最大漏極電流為9A(25℃)或7A(70℃),峰值漏極電流可達40A,最大功耗為2.5W(25℃)或1.6W(70℃)。SI4800的導通時間tON=13ns(包含導通延遲時間td(ON)=6ns,上升時間tR=7ns),關(guān)斷時間tOFF=34ns(包含關(guān)斷延遲時間td(OFF)=23ns,下降時間tF=11ns),跨導gFS=19S。工作溫度范圍是-55~+150℃。SI4800內(nèi)部有一只續(xù)流二極管VD,反極性地并聯(lián)在漏-源極之間(負極接D,正極接S),能對MOSFET功率管起到保護作用。VD的反向恢復時間trr=25ns。

功率MOSFET與雙極型晶體管不同,它的柵極電容CGS較大,在導通之前首先要對CGS進行充電,僅當CGS上的電壓超過柵-源開啟電壓〔UGS(th)〕時,MOSFET才開始導通。對SI4800而言,UGS(th)≥0.8V。為了保證MOSFET導通,用來對CGS充電的UGS要比額定值高一些,而且等效柵極電容也比CGS高出許多倍。

SI4800的柵-源電壓(UGS)與總柵極電荷(QG)的關(guān)系曲線如圖7所示。由圖7可知

QG=QGS+QGD+QOD    (1)

式中:QGS為柵-源極電荷;

QGD為柵-漏極電荷,亦稱米勒(Miller)電容上的電荷;

QOD為米勒電容充滿后的過充電荷。

當UGS=5V時,QGS=2.7nC,QGD=5nC,QOD=4.1nC,代入式(1)中不難算出,總柵極電荷QG=11.8nC。

等效柵極電容CEI等于總柵極電荷除以柵-源電壓,即

CEI=QG/UGS    (2)

將QG=11.8nC及UGS=5V代入式(2)中,可計算出等效柵極電容CEI=2.36nF。需要指出,等效柵極電容遠大于實際的柵極電容(即CEI?CGS),因此,應按CEI來計算在規(guī)定時間內(nèi)導通所需要的柵極峰值驅(qū)動電流IG(PK)。IG(PK)等于總柵極電荷除以導通時間,即

IG=QG/tON    (3)

將QG=11.8nC,tON=13ns代入式(3)中,可計算出導通時所需的IG(PK)=0.91A。

同步整流管V2由次級電壓來驅(qū)動,R2為V2的柵極負載。同步續(xù)流管V1直接由高頻變壓器的復位電壓來驅(qū)動,并且僅在V2截止時V1才工作。當肖特基二極管VD2截止時,有一部分能量存儲在共模扼流圈L2上。當高頻變壓器完成復位時,VD2續(xù)流導通,L2中的電能就通過VD2繼續(xù)給負載供電,維持輸出電壓不變。輔助繞組的輸出經(jīng)過VD1和C4整流濾波后,給光耦合器中的接收管提供偏置電壓。C5為控制端的旁路電容。上電啟動和自動重啟動的時間由C6決定。

輸出電壓經(jīng)過R10和R11分壓后,與可調(diào)式精密并聯(lián)穩(wěn)壓器LM431中的2.50V基準電壓進行比較,產(chǎn)生誤差電壓,再通過光耦合器PC357去控制DPA424R的占空比,對輸出電壓進行調(diào)節(jié)。R7、VD3和C3構(gòu)成軟啟動電路,可避免在剛接通電源時輸出電壓發(fā)生過沖現(xiàn)象。剛上電時,由于C3兩端的電壓不能突變,使得LM431不工作。隨著整流濾波器輸出電壓的升高并通過R7給C3充電,C3上的電壓不斷升高,LM431才轉(zhuǎn)入正常工作狀態(tài)。在軟啟動過程中,輸出電壓是緩慢升高的,最終達到3.3V的穩(wěn)定值。

4 結(jié)語

在設計低電壓、大電流輸出的DC/DC變換器時,采用同步整流技術(shù)能顯著提高電源效率。在驅(qū)動較大功率的同步整流器時,要求柵極峰值驅(qū)動電流IG(PK)≥1A時,還可采用CMOS高速功率MOSFET驅(qū)動器,例如Microchip公司開發(fā)的TC4426A~TC4428A。


本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動電源

在工業(yè)自動化蓬勃發(fā)展的當下,工業(yè)電機作為核心動力設備,其驅(qū)動電源的性能直接關(guān)系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅(qū)動電源設計中至關(guān)重要的兩個環(huán)節(jié),集成化方案的設計成為提升電機驅(qū)動性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機 驅(qū)動電源

LED 驅(qū)動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設備的使用壽命。然而,在實際應用中,LED 驅(qū)動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設計、生...

關(guān)鍵字: 驅(qū)動電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動電源的公式,電感內(nèi)電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設計 驅(qū)動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動汽車的核心技術(shù)之一是電機驅(qū)動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅(qū)動系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動汽車的動力性能和...

關(guān)鍵字: 電動汽車 新能源 驅(qū)動電源

在現(xiàn)代城市建設中,街道及停車場照明作為基礎設施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動電源 LED

LED通用照明設計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現(xiàn)在的LED驅(qū)動電源

關(guān)鍵字: LED 驅(qū)動電源 開關(guān)電源

LED驅(qū)動電源是把電源供應轉(zhuǎn)換為特定的電壓電流以驅(qū)動LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動電源
關(guān)閉