www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當(dāng)前位置:首頁 > 電源 > 功率器件
[導(dǎo)讀]SIMPLE SWITCHER電源模塊為應(yīng)對復(fù)雜的電源設(shè)計(jì),以及與直流/直流轉(zhuǎn)換器相關(guān)的典型的PCB布局提供了替代方案。雖然布局難題已被消除,但仍需完成一些工程設(shè)計(jì)工作,以便利用良好的旁路和散熱設(shè)計(jì)來優(yōu)化模塊性能。

全球出現(xiàn)的能源短缺問題使各國政府都開始大力推行節(jié)能新政。電子產(chǎn)品的能耗標(biāo)準(zhǔn)越來越嚴(yán)格,對于電源設(shè)計(jì)工程師,如何設(shè)計(jì)更高效率、更高性能的電源是一個(gè)永恒的挑戰(zhàn)。本文從電源PCB的布局出發(fā),介紹了優(yōu)化SIMPLE SWITCHER電源模塊性能的最佳PCB布局方法、實(shí)例及技術(shù)。


在規(guī)劃電源布局時(shí),首先要考慮的是兩個(gè)開關(guān)電流環(huán)路的物理環(huán)路區(qū)域。雖然在電源模塊中這些環(huán)路區(qū)域基本看不見,但是了解這兩個(gè)環(huán)路各自的電流路徑仍很重要,因?yàn)樗鼈儠?huì)延至模塊以外。在圖1所示的環(huán)路1中,電流自導(dǎo)通的輸入旁路電容器(Cin1),在高端MOSFET的持續(xù)導(dǎo)通時(shí)間內(nèi)經(jīng)該MOSFET,到達(dá)內(nèi)部電感器和輸出旁路電容器(CO1),最后返回輸入旁路電容器。

圖1 電源模塊中環(huán)路示意圖


環(huán)路2是在內(nèi)部高端MOSFET的關(guān)斷時(shí)間以及低端MOSFET的導(dǎo)通時(shí)間內(nèi)形成的。內(nèi)部電感器中存儲(chǔ)的能量流經(jīng)輸出旁路電容器和低端MOSFET,最后返回GND(如圖1所示)。兩個(gè)環(huán)路互不重疊的區(qū)域(包括環(huán)路間的邊界),即為高di/dt電流區(qū)域。在向轉(zhuǎn)換器提供高頻電流以及使高頻電流返回其源路徑的過程中,輸入旁路電容器(Cin1)起著關(guān)鍵作用。


輸出旁路電容器(Co1)雖然不會(huì)帶來較大交流電流,但卻會(huì)充當(dāng)開關(guān)噪聲的高頻濾波器。鑒于上述原因,在模塊上輸入和輸出電容器應(yīng)該盡量靠近各自的VIN和VOUT引腳放置。如圖2所示,若使旁路電容器與其各自的VIN和VOUT引腳之間的走線盡量縮短并擴(kuò)寬,即可將這些連接產(chǎn)生的電感降至最低。

圖2 SIMPLE SWITCHER環(huán)路


將PCB布局中的電感降至最低,有以下兩大好處。第一,通過促進(jìn)能量在Cin1與CO1之間的傳輸來提高元件性能。這將確保模塊具有良好的高頻旁路,將高di/dt電流產(chǎn)生的電感式電壓峰值降至最低。同時(shí)還能將器件噪聲和電壓應(yīng)力降至最低,確保其正常操作。第二,最大化降低EMI。


連接更少寄生電感的電容器,就會(huì)表現(xiàn)出對高頻率的低阻抗特性,從而減少傳導(dǎo)輻射。建議使用陶瓷電容器(X7R或X5R)或其他低ESR型電容器。只有將額外的電容放在靠近GND和VIN端時(shí),添加的更多的輸入電容才能發(fā)揮作用。SIMPLE SWITCHER電源模塊經(jīng)過獨(dú)特設(shè)計(jì),本身即具有低輻射和傳導(dǎo)EMI,而遵循本文介紹的PCB布局指導(dǎo)方針,將獲得更高性能。


回路電流的路徑規(guī)劃常被忽視,但它對于優(yōu)化電源設(shè)計(jì)卻起著關(guān)鍵作用。此外,應(yīng)該盡量縮短且擴(kuò)寬與Cin1和CO1之間的接地走線,并直接連接裸焊盤,這對于具有較大交流電流的輸入電容(Cin1)接地連接尤為重要。

[!--empirenews.page--]
模塊中接地的引腳(包括裸焊盤)、輸入和輸出電容器、軟啟動(dòng)電容以及反饋電阻,都應(yīng)連至PCB上的回路層。此回路層可作為電感電流極低的返回路徑以及下文將談及的散熱裝置使用。

圖3 模塊及作為熱阻抗的PCB示意圖


反饋電阻也應(yīng)放置在盡可能靠近模塊FB(反饋)引腳的位置上。要將此高阻抗節(jié)點(diǎn)上的潛在噪聲提取值降至最低,令FB引腳與反饋電阻中間抽頭之間的走線盡可能短是至關(guān)重要的??捎玫难a(bǔ)償組件或前饋電容器應(yīng)該放置在盡可能靠近上層反饋電阻的位置上。有關(guān)示例,請參閱相關(guān)模塊數(shù)據(jù)表中給出的的PCB布局圖表。


有關(guān)LMZ14203的布局示例,請參閱www.national.com上提供的應(yīng)用指南文檔AN-2024。

散熱設(shè)計(jì)建議
模塊的緊湊布局在電氣方面帶來好處的同時(shí),對散熱設(shè)計(jì)造成了負(fù)面影響,等值的功率要從更小的空間耗散掉??紤]到這一問題,SIMPLE SWITCHER電源模塊封裝的背面設(shè)計(jì)了一個(gè)單獨(dú)的大的裸焊盤,并以電氣方式接地。該焊盤有助于從內(nèi)部MOSFET(通常產(chǎn)生大部分熱量)到PCB間提供極低的熱阻抗。


從半導(dǎo)體結(jié)到這些器件外封裝的熱阻抗(θJC)為1.9℃/W。雖然達(dá)到行業(yè)領(lǐng)先的θJC值就很理想,但當(dāng)外封裝到空氣的熱阻抗(θCA)太大時(shí),低θJC值也毫無意義!如果沒有提供與周圍空氣相通的低阻抗散熱路徑,則熱量就會(huì)聚集在裸焊盤上無法消散。那么,究竟是什么決定了θCA值呢?從裸焊盤到空氣的熱阻完全受PCB設(shè)計(jì)以及相關(guān)的散熱片的控制。


現(xiàn)在來快速了解一下如何進(jìn)行不含散熱片的簡單PCB散熱設(shè)計(jì),圖3示意了模塊及作為熱阻抗的PCB。與從結(jié)到裸片焊盤的熱阻抗相比,由于結(jié)與外封裝頂部間的熱阻抗相對較高,因此在第一次估計(jì)從結(jié)到周圍空氣的熱阻(θJT)時(shí),我們可以忽略θJA散熱路徑。


散熱設(shè)計(jì)的第一步是確定要耗散的功率。利用數(shù)據(jù)表中公布的效率圖(η)即可輕松計(jì)算出模塊消耗的功率(PD)。

然后,我們使用設(shè)計(jì)中的最高溫度TAmbient和額定結(jié)溫TJunction(125℃)這兩個(gè)溫度約束來確定PCB上封裝的模塊所需的熱阻。

最后,我們使用PCB表面(頂層和底層上均具有未損壞的一盎司銅散熱片和無數(shù)個(gè)散熱孔)的對流熱傳遞的最大簡化的近似值來確定散熱所需的板面積。

所需的PCB板面積近似值未考慮到散熱孔所發(fā)揮的作用,這些散熱孔將熱量從頂部金屬層(封裝連接至PCB)向底部金屬層傳遞。底層用作第二表面層,對流可以從這里將板上的熱量傳送出去。為了使板面積近似值有效,需使用至少8~10個(gè)散熱孔。散熱孔的熱阻近似于下列方程式值。

此近似值適用于直徑為12密爾、銅側(cè)壁為0.5盎司的典型直通孔。在裸焊盤下方的整個(gè)區(qū)域內(nèi)要盡可能多地設(shè)計(jì)一些散熱孔,并使這些散熱孔以1~1.5mm的間距形成陣列。


更多信息請參閱www.national.com網(wǎng)站上提供的應(yīng)用指南文檔AN-2020和AN-2026。

結(jié)論
SIMPLE SWITCHER電源模塊為應(yīng)對復(fù)雜的電源設(shè)計(jì),以及與直流/直流轉(zhuǎn)換器相關(guān)的典型的PCB布局提供了替代方案。雖然布局難題已被消除,但仍需完成一些工程設(shè)計(jì)工作,以便利用良好的旁路和散熱設(shè)計(jì)來優(yōu)化模塊性能。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

摘要:迪拜五期900MW光伏項(xiàng)目是迪拜2030綜合能源戰(zhàn)略的一部分,現(xiàn)依托該項(xiàng)目,對影響外送電纜線路的參數(shù)進(jìn)行深入分析,針對IEC60287標(biāo)準(zhǔn)中未涉及的電纜敷設(shè)模型,采用創(chuàng)造性思維,通過Huebscher模型來模擬方形...

關(guān)鍵字: 敷設(shè)模型 熱阻 矯正計(jì)算

如果存在電場發(fā)射,則可能的罪魁禍?zhǔn)资窍到y(tǒng)中的最高電位。在電源和開關(guān)穩(wěn)壓器中,我們應(yīng)該注意開關(guān)晶體管和整流器,因?yàn)樗鼈兺ǔ>哂懈唠娢?,并且還可能由于散熱而具有較大的表面積。表面貼裝設(shè)備也可能存在這個(gè)問題,因?yàn)樗鼈兺ǔP枰?..

關(guān)鍵字: 電源 EMI PCB布局

對于一些需要盡可能低的輸出噪聲的應(yīng)用,使用線性穩(wěn)壓器的效率不足是不可接受的。在這些情況下,后置線性穩(wěn)壓器的開關(guān)穩(wěn)壓器可能是合適的。后置穩(wěn)壓器可衰減開關(guān)穩(wěn)壓器產(chǎn)生的高頻噪聲,從而使噪聲性能接近單獨(dú)的線性穩(wěn)壓器。由于大多數(shù)電...

關(guān)鍵字: 電源 EMI PCB布局

為了說明開關(guān)穩(wěn)壓器的操作,請考慮一個(gè)典型的同步整流降壓轉(zhuǎn)換器。在正常運(yùn)行期間,當(dāng)高端開關(guān) Q 1導(dǎo)通時(shí),電路將電流從輸入端傳導(dǎo)到輸出端,當(dāng) Q 1 關(guān)斷且同步整流器 Q 2導(dǎo)通時(shí),電流 繼續(xù)通過電感器傳導(dǎo) 。電流和電壓波...

關(guān)鍵字: 電源 EMI PCB布局

大多數(shù)便攜式設(shè)備都包含穩(wěn)壓器或其他形式的電源,并且與較小的光刻 IC 相關(guān)的較低電源電壓也要求在許多非便攜式設(shè)備中使用這些電源電路。盡管許多設(shè)計(jì)人員并不完全了解這些權(quán)衡取舍,但這些權(quán)衡取舍會(huì)對電池壽命、符合 EMI/EM...

關(guān)鍵字: 電源 EMI PCB布局

開關(guān)電源可分為 AC/DC 和 DC/DC 兩大類,DC/DC 變換器現(xiàn)已實(shí)現(xiàn)模塊化,且設(shè)計(jì)技術(shù)及生產(chǎn)工藝在國內(nèi)外均已成熟和標(biāo)準(zhǔn)化,并已得到用戶的認(rèn)可,但 AC/DC 的模塊化,因其自身的特性使得在模塊化的進(jìn)程中,遇到較...

關(guān)鍵字: 電源模塊 專業(yè)電源 控制開關(guān) 電源開關(guān) 開關(guān)系統(tǒng)

摘要:儲(chǔ)能逆變器大功率元器件集中安裝在散熱器上,熱耗集中在散熱器上,通過外風(fēng)扇熱對流將大部分熱量散去。通過熱設(shè)計(jì)的基本理論與軟件仿真的基本思想,對散熱器進(jìn)行整機(jī)系統(tǒng)熱仿真分析和優(yōu)化設(shè)計(jì),提供了一個(gè)散熱器的智能優(yōu)化設(shè)計(jì)方法...

關(guān)鍵字: 熱分析 熱阻 結(jié)溫

模塊電源的遙控開關(guān)操作,是通過 REM 端進(jìn)行的。一般控制方式有兩種: (1)REM 與-VIN(參考地)相連,遙控關(guān)斷,要求 VREF1V。 (2)REM 與 VIN 相連,遙控關(guān)斷,要求 VREM1V。R...

關(guān)鍵字: 電源模塊 專業(yè)電源 控制開關(guān) 電源開關(guān) 開關(guān)系統(tǒng)

電源模塊是可以直接貼裝在印刷電路板上的電源供應(yīng)器,其特點(diǎn)是可為專用集成電路(ASIC)、數(shù)字信號(hào)處理器 (DSP)、微處理器、存儲(chǔ)器、現(xiàn)場可編程門陣列 (FPGA) 及其他數(shù)字或模擬負(fù)載提供供電。一般來說,這類模塊稱為負(fù)...

關(guān)鍵字: 電源模塊 專業(yè)電源 控制開關(guān) 電源開關(guān) 開關(guān)系統(tǒng)

瓦爾登堡(德國),2022 年 8 月 17 日 - 新一代 MagI3C VDMM 電源模塊:輸出可變降壓微型模塊產(chǎn)品現(xiàn)在覆蓋從 3.3 V 到 24 V 的所有總線電壓,包括負(fù)載點(diǎn)電源,并可以直接與 24V 總線相連...

關(guān)鍵字: 伍爾特電子 電源模塊 負(fù)載點(diǎn)電源

功率器件

12198 篇文章

關(guān)注

發(fā)布文章

編輯精選

技術(shù)子站

關(guān)閉