www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當(dāng)前位置:首頁 > 電源 > 功率器件
[導(dǎo)讀]基于電感的開關(guān)電源(SM-PS)包含一個功率開關(guān),用于控制輸入電源流經(jīng)電感的電流。大多數(shù)開關(guān)電源設(shè)計選擇MOSFET作開關(guān)(圖1a中Q1),其主要優(yōu)點(diǎn)是MOSFET在導(dǎo)通狀態(tài)具有相對較低的功耗。    MOSFET完全打開時的導(dǎo)

基于電感的開關(guān)電源(SM-PS)包含一個功率開關(guān),用于控制輸入電源流經(jīng)電感的電流。大多數(shù)開關(guān)電源設(shè)計選擇MOSFET作開關(guān)(圖1a中Q1),其主要優(yōu)點(diǎn)是MOSFET在導(dǎo)通狀態(tài)具有相對較低的功耗。
  
MOSFET完全打開時的導(dǎo)通電阻(RDS(ON))是一個關(guān)鍵指標(biāo),因?yàn)镸OSFET的功耗隨導(dǎo)通電阻變化很大。開關(guān)完全打開時,MOSFET的功耗為ID2與RDS(ON)的乘積。如果RDS(ON)為0.02W,ID為1A,則MOSFET功耗為0.02*12=0.02W。功率MOSFET的另一功耗源是柵極電容的充放電。這種損耗在高開關(guān)頻率下非常明顯,而在穩(wěn)態(tài)(MOSFET連續(xù)導(dǎo)通)情況下,MOSFET柵極阻抗極高,典型的柵極電流在納安級,因此,這時柵極電容引起的功耗則微不足道。轉(zhuǎn)換效率是SMPS的重要指標(biāo),須選擇盡可能低的RDS(ON)。MOSFET制造商也在堅持不懈地開發(fā)低導(dǎo)通電阻的MOSFET,以滿足這一需求。
  
隨著蜂窩電話、PDA及其他電子設(shè)備的體積要求越來越小,對電子器件,包括電感、電容、MOSFET等的尺寸要求也更加苛刻。減小SMPS體積的通用方法是提高它的開關(guān)頻率,開關(guān)頻率高容許使用更小的電感、電容,使外部元件尺寸最小。
  
不幸的是,提高SMPS的開關(guān)頻率會降低轉(zhuǎn)換效率,即使MOSFET的導(dǎo)通電阻非常小。工作在高開關(guān)頻率時,MOSFET的動態(tài)特性,如柵極充放電和開關(guān)時間變得更重要。可以看到在較高的開關(guān)頻率時,高導(dǎo)通電阻的MOSFET反而可以提高SMPS的效率。為了理解這個現(xiàn)象就不能只看MOSFET的導(dǎo)通電阻。下面討論了N溝道增強(qiáng)型MOSFET的情況,其它類型的MOSFET具有相同結(jié)果。

 

圖1. 一個典型的升壓轉(zhuǎn)換器(a)利用MOSFET控制流經(jīng)電感至地。

 

當(dāng)溝道完全打開,溝道電阻(RDS(ON))降到最低;如果降低柵極電壓,溝道電阻則升高,直到幾乎沒有電流通過漏極、源極,這時MOSFET處于斷開狀態(tài)??梢灶A(yù)見,溝道的體積愈大,導(dǎo)通電阻愈小。同時,較大的溝道也需要較大的控制柵極。由于柵極類似于電容,較大的柵極其電容也較大,這就需要更多的電荷來開關(guān)MOSFET。同時,較大的溝道也需要更多的時間使MOSFET打開或關(guān)閉。工作在高開關(guān)頻率時,這些特性對轉(zhuǎn)換效率的下降有重要影響。
  
在低開關(guān)頻率或低功率下,對SMPS MOSFET的功率損耗起決定作用的是RDS(ON),其它非理想?yún)?shù)的影響通常很小,可忽略不計。而在高開關(guān)頻率下,這些動態(tài)特性將受到更多關(guān)注,因?yàn)檫@種情況下它們是影響開關(guān)損耗的主要原因。

MOSFET柵極類似于電容極板,對柵極提供一個正電壓可以提高溝道的場強(qiáng),產(chǎn)生低導(dǎo)通電阻路徑,提高溝道中的帶電粒子的流通。

對SMPS的柵極電容充電將消耗一定的功率,斷開MOSFET時,這些能量通常被消耗到地上。這樣,除了消耗在MOSFET導(dǎo)通電阻的功率外,SMPS的每一開關(guān)周期都消耗功率。顯然,在給定時間內(nèi)柵極電容充放電的次數(shù)隨開關(guān)頻率而升高,功耗也隨之增大。開關(guān)頻率非常高時,開關(guān)損耗會超過MOSFET導(dǎo)通電阻的損耗。
  
隨著開關(guān)頻率的升高,MOSFET的另一顯著功耗與MOSFET打開、關(guān)閉的過渡時間有關(guān)。圖3顯示MOSFET導(dǎo)通、斷開時的漏源電壓、漏極電流和MOSFET損耗。在功率損耗曲線下方,開關(guān)轉(zhuǎn)換期間的功耗比MOSFET導(dǎo)通時的損耗大。由此可見,功率損耗主要發(fā)生在開關(guān)狀態(tài)轉(zhuǎn)換時,而不是MOSFET開通時。
  
MOSFET的導(dǎo)通和關(guān)斷需要一定的過渡時間,以對溝道充電,產(chǎn)生電流或?qū)系婪烹?,關(guān)斷電流。MOSFET參數(shù)表中,這些參數(shù)稱為導(dǎo)通上升時間和關(guān)斷下降時間。對指定系列中,低導(dǎo)通電阻MOSFET對應(yīng)的開啟、關(guān)斷時間相對要長。當(dāng)MOSFET開啟、關(guān)閉時,溝道同時加有漏極到源極的電壓和導(dǎo)通電流,其乘積等于功率損耗。三個基本功率是:
  
P = I*E
  
P = I2*R
  
P = E2/R

對上述公式積分得到功耗,可以對不同的開關(guān)頻率下的功率損耗進(jìn)行評估。

MOSFET的開啟和關(guān)閉的時間是常數(shù),當(dāng)占空比不變而開關(guān)頻率升高時(圖5),狀態(tài)轉(zhuǎn)換的時間相應(yīng)增加,導(dǎo)致總功耗增加。例如,考慮一個SMPS工作在50%占空比500kHz,如果開啟時間和關(guān)閉時間各為0.1祍,那么導(dǎo)通時間和斷開時間各為0.4祍。如果開關(guān)頻率提高到1MHz,開啟時間和關(guān)閉時間仍為0.1祍,導(dǎo)通時間和斷開時間則為0.15祍。這樣,用于狀態(tài)轉(zhuǎn)換的時間比實(shí)際導(dǎo)通、斷開的時間還要長。

可以用一階近似更好地估計MOSFET的功耗,MOSFET柵極的充放電功耗的一階近似公式是:
  
EGATE = QGATE×VGS,

QGATE是柵極電荷, VGS是柵源電壓。

在升壓變換器中,從開啟到關(guān)閉、從關(guān)閉到開啟過程中產(chǎn)生的功耗可以近似為:
  
ET = (abs[VOUT - VIN]×ISW×t)/2
  
其中ISW是通過MOSFET的平均電流(典型值為0.5IPK),t是MOSFET參數(shù)表給出的開啟、關(guān)閉時間。

MOSFET完全導(dǎo)通時的功耗(傳導(dǎo)損耗)可近似為:
  
ECON = (ISW)2 ×RON×tON,
  
其中RON是參數(shù)表中給出的導(dǎo)通電阻,tON是完全導(dǎo)通時間(tON= 1/2f,假設(shè)最壞情況50%占空比)。

考慮一個典型的A廠商的MOSFET:
  
RDSON = 69mW
  
QGATE = 3.25nC
  
tRising = 9ns
  
tFalling = 12ns

一個升壓變換器參數(shù)如下:
  
VIN = 5V
  
VOUT = 12V
  
ISW = 0.5A
  
VGS = 4.5V

100kHz開關(guān)頻率下每周期的功率損耗如下:
  
EGATE = 3.25nC×4.5V = 14.6nJ
  
ET(rising) = ((12V - 5V)×0.5A×9ns)/2 = 17.75nJ
  
ET(falling) = ((12V - 5V)×0.5A ×12ns)/2 = 21nJ
  
ECON = (0.5)2 ×69mW×1/(2× 100kHz) = 86.25nJ.
  
從結(jié)果可以看到,100kHz時導(dǎo)通電阻的損耗占主要部分,但在1MHz時結(jié)果完全不同。柵極和開啟關(guān)閉的轉(zhuǎn)換損耗保持不變,每周期的傳導(dǎo)損耗以十分之一的倍率下降到8.625nJ,從每周期的主要功耗轉(zhuǎn)為最小項(xiàng)。每周期損耗在62nJ,頻率升高10倍,總MOSFET功率損耗增加了4.4倍。

另外一款MOSFET:
  
RDSON = 300mW
  
QGATE = 0.76nC
  
TRising = 7ns
  
TFalling = 2.5ns.

SMPS的工作參數(shù)如下:
  
EGATE = 0.76nC×4.5V = 3.4nJ
  
ET(rising) = ((12V - 5V)×0.5A×7ns)/2 = 12.25nJ
  
ET(falling) = ((12V - 5V)×0.5A×2.5ns)/2 = 4.3nJ
  
ECON = (0.5)2 ×300mW×1/(2× 1MHz) = 37.5nJ.
  
導(dǎo)通電阻的損耗仍然占主要地位,但是每周的總功耗僅57.45nJ。這就是說,高RDSON(超過4倍)的MOSFET使總功耗減少了7%以上。如上所述,可以通過選擇導(dǎo)通電阻及其它MOSFET參數(shù)來提高SMPS的效率。
  
到目前為止,對低導(dǎo)通電阻MOSFET的需求并沒有改變。大功率的SMPS傾向于使用低開關(guān)頻率,所以MOSFET的低導(dǎo)通電阻對提高效率非常關(guān)鍵。但對便攜設(shè)備,需要使用小體積的SMPS,此時的SMPS工作在較高的開關(guān)頻率,可以用更小的電感和電容。延長電池壽命必須提高SMPS效率,在高開關(guān)頻率下,低導(dǎo)通電阻MOSFET未必是最佳選擇,需要在導(dǎo)通電阻、柵極電荷、柵極上升/下降時間等參數(shù)上進(jìn)行折中考慮。
 

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動電源

在工業(yè)自動化蓬勃發(fā)展的當(dāng)下,工業(yè)電機(jī)作為核心動力設(shè)備,其驅(qū)動電源的性能直接關(guān)系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護(hù)是驅(qū)動電源設(shè)計中至關(guān)重要的兩個環(huán)節(jié),集成化方案的設(shè)計成為提升電機(jī)驅(qū)動性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機(jī) 驅(qū)動電源

LED 驅(qū)動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設(shè)備的使用壽命。然而,在實(shí)際應(yīng)用中,LED 驅(qū)動電源易損壞的問題卻十分常見,不僅增加了維護(hù)成本,還影響了用戶體驗(yàn)。要解決這一問題,需從設(shè)計、生...

關(guān)鍵字: 驅(qū)動電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動電源的公式,電感內(nèi)電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計 驅(qū)動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動汽車的核心技術(shù)之一是電機(jī)驅(qū)動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機(jī)驅(qū)動系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動汽車的動力性能和...

關(guān)鍵字: 電動汽車 新能源 驅(qū)動電源

在現(xiàn)代城市建設(shè)中,街道及停車場照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進(jìn)步,高亮度白光發(fā)光二極管(LED)因其獨(dú)特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動電源 LED

LED通用照明設(shè)計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機(jī)重量也有所下降,所以,現(xiàn)在的LED驅(qū)動電源

關(guān)鍵字: LED 驅(qū)動電源 開關(guān)電源

LED驅(qū)動電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動電源
關(guān)閉