www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當前位置:首頁 > 電源 > 功率器件
[導(dǎo)讀]近來, LLC拓撲以其高效,高功率密度受到廣大電源設(shè)計工程師的青睞,但是這種軟開關(guān)拓撲對MOSFET的要求卻超過了以往任何一種硬開關(guān)拓撲。特別是在電源啟機,動態(tài)負載,過載,短路等情況下。Infineon CoolMOS CFD2系列

近來, LLC拓撲以其高效,高功率密度受到廣大電源設(shè)計工程師的青睞,但是這種軟開關(guān)拓撲對MOSFET的要求卻超過了以往任何一種硬開關(guān)拓撲。特別是在電源啟機,動態(tài)負載,過載,短路等情況下。Infineon CoolMOS CFD2系列以其高擊穿電壓,快恢復(fù)體二極管,低Qg 和Coss能夠完全滿足這些需求并大大提升電源系統(tǒng)的可靠性。

1. 引言

長期以來, 提升電源系統(tǒng)功率密度,效率以及系統(tǒng)的可靠性一直是研發(fā)人員面臨的重大課題。 提升電源的開關(guān)頻率是其中的方法之一, 但是頻率的提升會影響到功率器件的開關(guān)損耗,使得提升頻率對硬開關(guān)拓撲來說效果并不十分明顯,硬開關(guān)拓撲已經(jīng)達到了它的設(shè)計瓶頸。而此時,軟開關(guān)拓撲,如LLC拓撲以其獨具的特點受到廣大設(shè)計工程師的追捧。但是… 這種拓撲卻對功率器件提出了新的要求。

2. LLC 電路的特點

LLC 拓撲的以下特點使其廣泛的應(yīng)用于各種開關(guān)電源之中:

1. LLC 轉(zhuǎn)換器可以在寬負載范圍內(nèi)實現(xiàn)零電壓開關(guān)。

2. 能夠在輸入電壓和負載大范圍變化的情況下調(diào)節(jié)輸出,同時開關(guān)頻率變化相對很小。

3. 采用頻率控制,上下管的占空比都為50%.

4. 減小次級同步整流MOSFET的電壓應(yīng)力,可以采用更低的電壓MOSFET從而減少成本。

5. 無需輸出電感,可以進一步降低系統(tǒng)成本。

6. 采用更低電壓的同步整流MOSFET, 可以進一步提升效率。

3. LLC 電路的基本結(jié)構(gòu)以及工作原理

圖1和圖2分別給出了LLC諧振變換器的典型線路和工作波形。如圖1所示LLC轉(zhuǎn)換器包括兩個功率MOSFET(Q1和Q2),其占空比都為0.5;諧振電容Cr,副邊匝數(shù)相等的中心抽頭變壓器Tr,等效電感Lr,勵磁電感Lm,全波整流二極管D1和D2以及輸出電容Co。

 

 

圖1 LLC諧振變換器的典型線路

 

 

圖2 LLC諧振變換器的工作波形

而LLC有兩個諧振頻率,Cr, Lr 決定諧振頻率fr1; 而Lm, Lr, Cr決定諧振頻率fr2。

系統(tǒng)的負載變化時會造成系統(tǒng)工作頻率的變化,當負載增加時, MOSFET開關(guān)頻率減小, 當負載減小時,開關(guān)頻率增大。

 

 

 

 

3.1 LLC諧振變換器的工作時序

LLC變換器的穩(wěn)態(tài)工作原理如下。

1)〔t1,t2〕

Q1關(guān)斷,Q2開通,電感Lr和Cr進行諧振,次級D1關(guān)斷,D2開通,二極管D1約為兩倍輸出電壓,此時能量從Cr, Lr轉(zhuǎn)換至次級。直到Q2關(guān)斷。

2)〔t2,t3〕

Q1和Q2同時關(guān)斷,此時處于死區(qū)時間, 此時電感Lr, Lm電流給Q2的輸出電容充電,給Q1的輸出電容放電直到Q2輸出電容的電壓等于Vin.

次級D1和D2關(guān)斷 Vd1=Vd2=0, 當Q1開通時該相位結(jié)束。

3)〔t3,t4〕

Q1導(dǎo)通,Q2關(guān)斷。D1導(dǎo)通, D2關(guān)斷, 此時Vd2=2Vout

Cr和Lr諧振在fr1, 此時Ls的電流通過Q1返回到Vin,直到Lr的電流為零次相位結(jié)束。

4)〔t4,t5〕

Q1導(dǎo)通, Q2關(guān)斷, D1導(dǎo)通, D2關(guān)斷,Vd2=2Vout

Cr和Lr諧振在fr1, Lr的電流反向通過Q1流回功率地。 能量從輸入轉(zhuǎn)換到次級,直到Q1關(guān)斷該相位結(jié)束

5)〔t5,t6)

Q1,Q2同時關(guān)斷, D1,D2關(guān)斷, 原邊電流I(Lr+Lm)給Q1的Coss充電, 給Coss2放電, 直到Q2的Coss電壓為零。 此時Q2二極管開始導(dǎo)通。 Q2開通時相位結(jié)束。

6)〔t6,t7〕

Q1關(guān)斷,Q2導(dǎo)通,D1關(guān)斷, D2 開通,Cr和Ls諧振在頻率fr1, Lr 電流經(jīng)Q2回到地。 當Lr電流為零時相位結(jié)束。

3.2 LLC諧振轉(zhuǎn)換器異常狀態(tài)分析

以上描述都是LLC工作在諧振模式, 接下來我們分析LLC轉(zhuǎn)換器在啟機, 短路, 動態(tài)負載下的工作情況。

3.21 啟機狀態(tài)分析

通過LLC 仿真我們得到如圖3所示的波形,在啟機第一個開關(guān)周期,上下管會同時出現(xiàn)一個短暫的峰值電流Ids1 和Ids2. 由于MOSFET Q1開通時會給下管Q2的輸出電容Coss充電,當Vds為高電平時充電結(jié)束。而峰值電流Ids1和Ids2也正是由于Vin通過MOSFET Q1 給Q2 結(jié)電容Coss的充電而產(chǎn)生。

 

 

圖3 LLC 仿真波形

我們將焦點放在第二個開關(guān)周期時如圖4,我們發(fā)現(xiàn)此時也會出現(xiàn)跟第一個開關(guān)周期類似的尖峰電流,而且峰值會更高,同時MOSFET Q2 Vds也出現(xiàn)一個很高的dv/dt峰值電壓。那么這個峰值電流的是否仍然是Coss引起的呢? 我們來做進一步的研究。

 

 

圖4 第二個開關(guān)周期波形圖

[!--empirenews.page--]

對MOSFET結(jié)構(gòu)有一定了解的工程師都知道,MOSFET不同于IGBT,在MOSFET內(nèi)部其實寄生有一個體二極管,跟普通二極管一樣在截止過程中都需要中和載流子才能反向恢復(fù), 而只有二極管兩端加上反向電壓才能夠使這個反向恢復(fù)快速完成, 而反向恢復(fù)所需的能量跟二極管的電荷量Qrr相關(guān), 而體二極管的反向恢復(fù)同樣需要在體二極管兩端加上一個反向電壓。在啟機時加在二極管兩端的電壓Vd=Id2 x RON. 而Id2在啟機時幾乎為零,而二極管在Vd較低時需要很長的時間來進行反向恢復(fù)。如果死區(qū)時間設(shè)置不夠,如圖5所示高的dv/dt會直接觸發(fā)MOSFET內(nèi)的BJT從而擊穿MOSFET.

 

 

圖5

通過實際的測試,我們可以重復(fù)到類似的波形,第二個開關(guān)周期產(chǎn)生遠比第一個開關(guān)周期高的峰值電流,同時當MOSFET在啟機的時dv/dt高118.4V/ns. 而Vds電壓更是超出了600V的最大值。MOSFET在啟機時存在風險。

 

 

 

圖6

 

3.22 異常狀態(tài)分析

下面我們繼續(xù)分析在負載劇烈變化時,對LLC拓撲來說存在那些潛在的風險。

在負載劇烈變化時,如短路,動態(tài)負載等狀態(tài)時,LLC電路的關(guān)鍵器件MOSFET同樣也面臨著挑戰(zhàn)。

通常負載變化時LLC 都會經(jīng)歷以下3個狀態(tài)。我們稱之為硬關(guān)斷, 而右圖中我們可以比較在這3個時序當中,傳統(tǒng)MOSFET和CoolMOS內(nèi)部載流子變化的不同, 以及對MOSFET帶來的風險。

 

 

時序1, Q2零電壓開通,反向電流經(jīng)過MOSFET和體二極管, 此時次級二極管D2開通,D1關(guān)段。

-傳統(tǒng)MOSFET此時電子電流經(jīng)溝道區(qū),從而減少空穴數(shù)量

-CoolMOS此時同傳統(tǒng)MOSFET一樣電子電流經(jīng)溝道,穴減少,不同的是此時CoolMOS 的P井結(jié)構(gòu)開始建立。

 

 

時序2, Q1和Q2同時關(guān)斷,反向電流經(jīng)過MOSFETQ2體二極管。

Q1和Q2關(guān)斷時對于傳統(tǒng)MOSFET和CoolMOS來說內(nèi)部電子和空穴路徑和流向并沒有太大的區(qū)別。

 

 

時序3, Q1此時開始導(dǎo)通,由于負載的變化, 此時MOSFET Q2的體二極管需要很長的時間來反向恢復(fù)。當二極管反向恢復(fù)沒有完成時MOSFET Q2出現(xiàn)硬關(guān)斷, 此時Q1開通,加在Q2體二極管上的電壓會在二極管形成一個大電流從而觸發(fā)MOSFET內(nèi)部的BJT造成雪崩。

-傳統(tǒng)MOSFET此時載流子抽出,此時電子聚集在PN節(jié)周圍, 空穴電流擁堵在PN節(jié)邊緣。

-CoolMOS的電子電流和空穴電流各行其道, 此時空穴電流在已建立好的P井結(jié)構(gòu)中流動,并無電子擁堵現(xiàn)象。

綜上, 當LLC電路出現(xiàn)過載,短路,動態(tài)負載等條件下, 一旦二極管在死區(qū)時間不能及時反向恢復(fù), 產(chǎn)生的巨大的復(fù)合電流會觸發(fā)MOSFET內(nèi)部的BJT使MOSFET失效。

InfinEON CoolMOS采用Super Juction結(jié)構(gòu), 這種結(jié)構(gòu)在MOSFET硬關(guān)斷的狀態(tài)下, 載流子會沿垂直構(gòu)建的P井中復(fù)合, 基本上沒有側(cè)向電流, 大大減少觸發(fā)BJT的機會。

4. 如何更容易實現(xiàn)ZVS

通過以上的分析,可以看到增加MOSFET的死區(qū)時間,可以提供足夠的二極管反向恢復(fù)時間同時降低高dv/dt, di/dt 對LLC電路造成的風險。但是增加死區(qū)時間是唯一的選擇么?下面我們進一步分析如何夠降低風險提升系統(tǒng)效率。

 

 

圖7

[!--empirenews.page--]

對于LLC 電路來說死區(qū)時間的初始電流為

 

 

而LLC能夠?qū)崿F(xiàn)ZVS必須滿足

 

 

而最小勵磁電感為

 

 

根據(jù)以上3個等式,我們可以通過以下三種方式讓LLC實現(xiàn)ZVS.

第一, 增加Ipk.

第二, 增加死區(qū)時間。

第三, 減小等效電容Ceq即Coss.

從以上幾種狀況,我們不難分析出。增加Ipk會增加電感尺寸以及成本,增加死區(qū)時間會降低正常工作時的電壓,而最好的選擇無疑是減小Coss,因為減小無須對電路做任何調(diào)整,只需要換上一個Coss相對較小MOSFET即可。

5. Infineon CoolMOS CFD系列

Infineon CoolMOS CFD2是Infineon CoolMOS CFD系列的第二代產(chǎn)品也是目前市場上第一顆650V并且?guī)Э旎謴?fù)二極管的650V高壓MOSFET.

極低的Qrr和trr使得該MOSFET可以輕松的應(yīng)對LLC硬關(guān)斷時各種現(xiàn)象。圖8中是CoolMOS CFD2 Qrr和其他系列的MOS的對比,可以明顯的看見Cool CFD2 (IPW65R080CFD)的Qrr要遠遠低于其他系列。圖9是LLC 電路發(fā)生硬關(guān)斷的波形比較,此時由于二極管反向恢復(fù)所產(chǎn)生的峰值電壓要遠遠小于其他型號MOSFET. 因此CoolMOS CFD2在LLC拓撲電源系統(tǒng)發(fā)生啟機,動態(tài)負載,過載,短路等異常情況下表現(xiàn)出更高的可靠性。

 

 

圖8 CoolMOS CFD2 Qrr和其他系列的MOS的對比

同時我們在圖9中比較了CoolMOS CFD2(IPW65R080CFD)和其他型號同類型的MOSFET的Coss.

 

 

圖9 CoolMOS CFD2(IPW65R080CFD)和其他型號同類型的MOSFET的Coss

在Vds電壓高于100V時,CoolMOS CFD2的Coss要比其他的MOSFET小一半左右。

更低的Coss使得LLC更容易實現(xiàn)ZVS,從而進一步提升電源系統(tǒng)效率。

 

 

圖10 對比結(jié)果

6. 結(jié)論

LLC 拓撲廣泛的應(yīng)用于各種開關(guān)電源當中,而這種拓撲在提升效率的同時也對MOSFET提出了新的要求。不同于硬開關(guān)拓撲,軟開關(guān)LLC諧振拓撲,不僅僅對MOSFET的導(dǎo)通電阻(導(dǎo)通損耗),Qg(開關(guān)損耗)有要求,同時對于如何能夠有效的實現(xiàn)軟開關(guān),如何降低失效率,提升系統(tǒng)可靠性,降低系統(tǒng)的成本有更高的要求。英飛凌CoolMOS CFD2系列,具有快速的體二極管,低Coss,高達650V的擊穿電壓,使LLC拓撲開關(guān)電源具有更高的效率和可靠性。

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動電源

在工業(yè)自動化蓬勃發(fā)展的當下,工業(yè)電機作為核心動力設(shè)備,其驅(qū)動電源的性能直接關(guān)系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅(qū)動電源設(shè)計中至關(guān)重要的兩個環(huán)節(jié),集成化方案的設(shè)計成為提升電機驅(qū)動性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機 驅(qū)動電源

LED 驅(qū)動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設(shè)備的使用壽命。然而,在實際應(yīng)用中,LED 驅(qū)動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設(shè)計、生...

關(guān)鍵字: 驅(qū)動電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動電源的公式,電感內(nèi)電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計 驅(qū)動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動汽車的核心技術(shù)之一是電機驅(qū)動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅(qū)動系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動汽車的動力性能和...

關(guān)鍵字: 電動汽車 新能源 驅(qū)動電源

在現(xiàn)代城市建設(shè)中,街道及停車場照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動電源 LED

LED通用照明設(shè)計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現(xiàn)在的LED驅(qū)動電源

關(guān)鍵字: LED 驅(qū)動電源 開關(guān)電源

LED驅(qū)動電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動電源
關(guān)閉