www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當前位置:首頁 > 電源 > 功率器件
[導讀]多數半導體組件結溫的計算過程很多人都知道。通常情況下,外殼或接腳溫度已知。量測裸片的功率耗散,并乘以裸片至封裝的熱阻(用theta或θ表示),以計算外殼至結點的溫

多數半導體組件結溫的計算過程很多人都知道。通常情況下,外殼或接腳溫度已知。量測裸片的功率耗散,并乘以裸片至封裝的熱阻(用theta或θ表示),以計算外殼至結點的溫升。這種方法適用于所有單裸片封裝,包括雙極結晶體管(BJT)、MOSFET、二極管及晶閘管。但對多裸片絕緣柵雙極晶體管(IGBT)而言,這種方法被證實不足以勝任。

某些IGBT是單裸片組件,要么結合單片二極管作,要么不結合二極管;然而,大多數IGBT結合了聯(lián)合封裝的二極管。大多數制造商提供單個θ值,用于計算結點至外殼熱阻抗。這是一種簡化的裸片溫度計算方法,會導致涉及到的兩個結點溫度分析不正確。對于多裸片組件而言,θ值通常不同,兩個裸片的功率耗散也不同,各自要求單獨計算。此外,每個裸片互相提供熱能,故必須顧及到這種交互影響。

本文將闡釋怎樣量測兩個組件的功率耗散,使用IGBT及二極管的θ值計算平均結溫及峰值結溫。

 

圖1:貼裝在TO-247封裝引線框上的IGBT及二極管。

功率計算

電壓與電流波形必須相乘然后作積分運算以量測功率。雖然電壓和電流簡單相乘就可以給出瞬時功率,但無法使用這種方法簡單地推導出平均功率,故使用了積分來將它轉換為能量。然后,使用不同損耗的能量之和以計算波形的平均功率。

在開始計算之前定義導通、導電及關閉損耗的邊界很重要,因為如果波形的某些區(qū)域遺漏了或者是某些區(qū)域被重復了,它們可能會給量測結果帶來誤差。本文的分析中將使用10%這個點;然而,由于這是一種常見方法,也可以使用其他點,如5%或20%,只要它們適用于損耗的全部成分。

正常情況下截取的是正在形成的正弦波的峰值波形。這就是峰值功率耗散。平均功率是峰值的50%(平均電壓是峰值電壓除以√2,平均電流是峰值電流除以√2)。

一般而言,在電壓波形的峰值,IGBT將導電,而二極管不導電。為了量測二極管損耗,要求像電機這樣的無功負載,且需要捕獲電流處于無功狀態(tài)(如被饋送回電源)時的波形。

 

圖2:IGBT導通波形。

導通時,應當量測起于IC電平10%終于10% VCE點的損耗。這些電平等級相當標準,雖然這樣說也有些主觀性。如果需要的話,也可以使用其他點。無論選擇何種電平來量測不同間隔,重要的是保持一致,使從不同 組件獲取的數據能夠根據相同的條件來比較。功率根據示波器波形來計算。由于它并非恒定不變,且要求平均功率,就必須計算電源波形的積分,如波形跡線的底部 所示,本案例中為674.3 μW(或焦耳)。

 

圖3:IGBT關閉波形。

與之類似,關閉損耗的量測如下圖所示。

 

圖4:IGBT導電損耗波形。

導電損耗的量測方式類似。它們應當起于導通損耗終點,終于關閉損耗起點。這可能難于精確量測,因為導電損耗的時間刻度遠大于開關損耗。

 

圖5:二極管關閉波形。

必須獲取在開關周期的部分時段(此時電流為無功模式使二極管導電)時的二極管導通損耗資料。通常量測峰值、負及反向導電電流10%點的資料。

 

圖6:二極管導電損耗波形。

二極管導電損耗是計算IGBT封裝總損耗所要求的最后一個損耗成分。當計算出所有損耗之后,它們需要應用于以工作模式時長為基礎的總體波形。當增加并顧及到這些能量之后,它們可以一起相加,并乘以開關頻率,以獲得二極管及IGBT功率損耗。[!--empirenews.page--]

裸片溫度計算

為了精確計算封裝中 兩個裸片的溫度,重要的是計算兩個裸片之間的自身發(fā)熱導致的熱相互影響。這要求3個常數:IGBT的θ值、IGBT的θ值,以及裸片交互影響ψ(Psi)。某些制造商會公布封裝的單個θ值,其中裸片溫度僅為估計值,實際上精度可能差異極大。

安森美半導體IGBT組件的數據表中包含IGBT及二極管θ值圖表。穩(wěn)態(tài)θ值如圖7及圖8中的圖表所示。IGBT的θ值為0.470 °C/W,二極管為1.06 °C/W。計算中還要求另一項熱系數,即兩個裸片之間的熱交互影響常數ψ。測試顯示對于TO-247、TO-220及類似封裝而言,此常數約為0.15 °C/W,下面的示例中將使用此常數。

 

圖7:IGBT瞬時熱阻抗。

 

圖8:二極管瞬態(tài)熱阻抗。

IGBT裸片溫度

IGBT的裸片溫度可以根據下述等式來計算:

 

假定下列條件:

TC= 82°C

RΘJC-IGBT= 0.470 °C/W

PD-IGBT= 65 W

PD-DIODE= 35 W

Psi交互影響= 0.15°C/W

IGBT的裸片溫度就是:

 

二極管裸片溫度

RΘJC-diode= 1.06°C/W

 

類似的是,二極管裸片溫度為:

 

峰值裸片溫度

上述分析中計算的溫度針對的是平均裸片溫度。此溫度在開關周期內不斷變化,而峰值裸片溫度可以使用圖7和圖8中的熱瞬時曲線來計算。為了計算,有必要從曲線 中讀取瞬時信息。如果交流電頻率為60 Hz,半個周期就是時長就是8.3 ms。因此,使用8.3 ms時長內的50%占空比曲線,就可以計算Psi值:

IGBT 0.36 °C/W

二極管 0.70 °C/W

 

IGBT裸片的峰值溫度就會是:

 

二極管裸片峰值溫度就是:

 

結論

評估多裸片封裝內的半導體裸片溫度,在單裸片組件適用技術基礎上,要求更多的分析技術。有必要獲得兩個裸片提供的直流及瞬時熱信息,以計算裸片溫度。還有必要量測兩個組件的功率耗散,分析完整半正弦波范圍抽的損耗。此分析將增強用戶信心,即系統(tǒng)中的半導體組件將以安全可靠的溫度工作,提供最優(yōu)的系統(tǒng)性能。

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內容真實性等。需要轉載請聯(lián)系該專欄作者,如若文章內容侵犯您的權益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: 驅動電源

在工業(yè)自動化蓬勃發(fā)展的當下,工業(yè)電機作為核心動力設備,其驅動電源的性能直接關系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅動電源設計中至關重要的兩個環(huán)節(jié),集成化方案的設計成為提升電機驅動性能的關鍵。

關鍵字: 工業(yè)電機 驅動電源

LED 驅動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設備的使用壽命。然而,在實際應用中,LED 驅動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設計、生...

關鍵字: 驅動電源 照明系統(tǒng) 散熱

根據LED驅動電源的公式,電感內電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關鍵字: LED 設計 驅動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產業(yè)的重要發(fā)展方向。電動汽車的核心技術之一是電機驅動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅動系統(tǒng)中的關鍵元件,其性能直接影響到電動汽車的動力性能和...

關鍵字: 電動汽車 新能源 驅動電源

在現(xiàn)代城市建設中,街道及停車場照明作為基礎設施的重要組成部分,其質量和效率直接關系到城市的公共安全、居民生活質量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關鍵字: 發(fā)光二極管 驅動電源 LED

LED通用照明設計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數校正(PFC)、空間受限和可靠性等。

關鍵字: LED 驅動電源 功率因數校正

在LED照明技術日益普及的今天,LED驅動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關鍵字: LED照明技術 電磁干擾 驅動電源

開關電源具有效率高的特性,而且開關電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現(xiàn)在的LED驅動電源

關鍵字: LED 驅動電源 開關電源

LED驅動電源是把電源供應轉換為特定的電壓電流以驅動LED發(fā)光的電壓轉換器,通常情況下:LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: LED 隧道燈 驅動電源
關閉