www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當前位置:首頁 > 電源 > 功率器件
[導(dǎo)讀]對于理想開關(guān)的需求 功率 MOSFET 可作為高頻率脈沖寬度調(diào)變 (PWM) 應(yīng)用中的電氣開關(guān),例如穩(wěn)壓器及/或控制電源應(yīng)用之中負載電流的開關(guān)。作為負載開關(guān)使用時,由于切換時

對于理想開關(guān)的需求

功率 MOSFET 可作為高頻率脈沖寬度調(diào)變 (PWM) 應(yīng)用中的電氣開關(guān),例如穩(wěn)壓器及/或控制電源應(yīng)用之中負載電流的開關(guān)。作為負載開關(guān)使用時,由于切換時間通常較長,因此裝置的成本、尺寸及導(dǎo)通電阻 (on-resistance) 是設(shè)計時考慮的重點。用于 PWM 應(yīng)用時,晶體管必須在切換期間達到最低的功率損耗,對于促使 MOSFET 設(shè)計更為挑戰(zhàn)且時間成本更高的小型內(nèi)部電容而言,這已成為另一項必要的需求。設(shè)計人員需要特別注意閘極對汲極 (Cgd) 電容,因為這類電容決定了切換期間的電壓瞬時時間,這是影響切換功率損耗最重要的參數(shù)。

同步降壓轉(zhuǎn)換器的“理想”開關(guān),即計算機應(yīng)用中最常用的轉(zhuǎn)換器拓樸,必須具備下列需求:

低傳導(dǎo)損耗 (低 Rds,on)
低切換損耗 (低 Cgd)
低驅(qū)動器損耗 (低 Ciss)
無橫流 (cross-current) 損耗 (低 Cgd/Ciss 比率,避免擊穿 (shoot-through) 效應(yīng))
低體二極管 (body diode) 損耗 (低 Qrr 及硬式切換,縮短先斷后合(break-before-make) 的延遲時間)
當然,作為開關(guān)用的裝置必須具備穩(wěn)定的結(jié)構(gòu),才能消耗大量的累增崩潰電量 (avalanche energy),以確保整個安全操作范圍 (SOA)的運作都正常可靠。

裝置概念及技術(shù)

NexFETTM 技術(shù)是電源應(yīng)用的新一代 MOSFET,其中采用能夠成功放大無線射頻 (RF) 信號的橫向擴散金屬氧化物半導(dǎo)體 (LDMOS) 裝置;見圖 1剖面示意圖。電流會從最上層金屬化源極端流經(jīng)平面閘極下方的側(cè)邊通道,并流至輕摻雜汲極 (LDD) 延伸區(qū)域,然后借由低阻抗的垂直沉片 (vertical sinker) 轉(zhuǎn)向基板。無線射頻可提供最低的內(nèi)部電容,而垂直電流可提供高電流密度,完全沒有 LDMOS 晶體管平面配置常出現(xiàn)的解偏壓問題。

圖 1. NexFET 裝置的剖面示意圖


NexFET 裝置的源極金屬化具有獨特的拓樸,可在閘極的汲極隅點達到場效電板 (field-plate) 效應(yīng)。場效電板能夠沿著 LDD 區(qū)域進行電場散布,因此能夠降低閘極隅點的高電場峰值,最終能夠有效抑制熱載子 (hot carrier effect) 效應(yīng),此效應(yīng)會造成一般常用 LDMOS 晶體管內(nèi)閘極氧化物質(zhì)量的惡化。

利用 LDD、場效電板及下方深 P 區(qū)域的電荷平衡,LDD 區(qū)域會提升到高度載子集中的程度。這有助于將裝置的阻抗 (RDS(on)) 降至最低。深 P 摻雜也可用來提供信道區(qū)域下方的一個大型電荷,以抑制短通道效應(yīng) (short channel effect)。如此的做法可設(shè)計出較短的通道,而不會產(chǎn)生任何與貫穿效應(yīng) (punch-through effect) 相關(guān)的問題。在連接至源極植入?yún)^(qū)域的淺溝槽中,會執(zhí)行源極接觸。摻雜分布 (doping profile) 工程技術(shù)可用來找出高汲極電壓的電氣故障位置。進而找出遠離閘極氧化物的累增崩潰產(chǎn)生熱載子,并且確保內(nèi)部雙極晶體管結(jié)構(gòu)不會達到極高的累增崩潰電流密度而被觸發(fā)。

最近二十年來,溝槽 MOSFET 已成為低電壓 (小于 100V) 電源開關(guān)最成功的技術(shù)。圖 2 為溝槽及 NexFET 技術(shù)的比較。溝槽技術(shù)的主要優(yōu)點是主動式電池節(jié)距內(nèi)具備高信道密度。然而,大區(qū)域的溝槽壁不利于縮小內(nèi)部電容的體積。另外,溝槽下方外延層的中等摻雜程度使得晶體管的阻抗無法加以調(diào)整,并且會限制低汲極電壓應(yīng)用 (例如低于 20V VDS,max) 中FET設(shè)計所具有的優(yōu)點。

圖 2. Trench-FET 與 NexFET 的技術(shù)比較


設(shè)計人員可利用現(xiàn)成的最新精密平版印刷制程來結(jié)合細微的閘極線路與 LDD 區(qū)域的高摻雜度。此全新結(jié)構(gòu)具有溝槽 MOSFET 技術(shù)的優(yōu)異阻抗性能,又保有極低的電荷特性。橫跨源極與汲極的閘極最小重迭區(qū)能夠使內(nèi)部 CGS 及 CGD 電容的體積縮小,因此可達到絕佳的切換性能。此外,LDD 區(qū)域的源極金屬場效電板可作為屏蔽汲極終端的去耦合閘極,這會大幅降低 CGD 值,即使是小量汲極電壓。對先進溝槽 MOSFET而言,較低的 CISS 及 CGD 值會使得 NexFET-FOM (RDS*QG 及 RDS*QGD 指標) 優(yōu)于進行觀測的 FOM (見圖 3)。

圖 3. 評定 FOM性能


NexFET 切換性能

在同步降壓拓樸的 PWM 切換轉(zhuǎn)換器應(yīng)用中,NexFET 裝置及最新溝槽 MOSFET 的性能評定實驗資料 (圖 4) 在低功耗電源供應(yīng)領(lǐng)域中相當常見。對六相位的商用評估電路板而言,轉(zhuǎn)換器的效率被視為輸出電流的功能之一。使用先進溝槽裝置取得的結(jié)果落在資料的鄰近群組內(nèi),誤差只有 ±0.5%。在整個負載電流的范圍中,NexFET 芯片組實現(xiàn)的轉(zhuǎn)換器效率高出 2% 至 3%。

NexFET 晶體管具有相似于最佳溝槽裝置的體二極管反向恢復(fù)行為 (body diode reverse recovery behaviour),它們的差異在于 NexFET 可運用硬式 PWM 驅(qū)動器,其中晶體管的關(guān)閉不僅相當靈敏,而且尾部電流相當小,因此可達到較短的先斷后合延遲時間,而且能夠?qū)⒍O管傳導(dǎo)時間及相關(guān)的二極管傳導(dǎo)功率損耗降至最低。換句話說,使用 NexFET 開關(guān)時,縮短閘極驅(qū)動器階段所需的延遲時間能夠進一步提升轉(zhuǎn)換器的效率。

圖 4. 服務(wù)器應(yīng)用中同步降壓轉(zhuǎn)換器效率


圖 5 顯示 NexFET 解決方案與先進溝槽 FET 芯片組中 12V 同步降壓轉(zhuǎn)換器在功率損耗與切換頻率的相互關(guān)系比較??偨Y(jié)而言,轉(zhuǎn)換器的效率可維持在切換頻率的 90% 以上 (功率損耗為 3W),而使用 NexFET 裝置可將切換頻率從 500kHz 增加到 1MHz。驅(qū)動條件經(jīng)過最佳化后,便能夠?qū)⒋祟l率實際增加到 1MHz 以上。

圖 5. 高切換頻率、支持 NexFET的轉(zhuǎn)換器運作


摘要及展望

針對理想開關(guān)的需求,NexFET 技術(shù)可提供下列功能:

特定 RDS(on) 能夠與最新溝槽 FET 媲美
更低的 CISS 及 CGD 可提升 FOM
大幅改善切換損耗及驅(qū)動器損耗
CGD 與 CISS 的比率近似于溝槽 FET,但是絕對 CGD 值相當小,而且通過米勒電容 (Miller capacitance) 將電荷回饋的總數(shù)降至最低,可提升擊穿效應(yīng)的抗擾度。

體二極管的 Qrr 相當近似,但是可以更加重NexFET 晶體管的切換,而且可以大幅縮短驅(qū)動器所導(dǎo)致的停滯時間 (dead time)。

只要將 NexFET 芯片組置入既有系統(tǒng)中,即可觀測出轉(zhuǎn)換器效率方面的獨特優(yōu)點。NexFET 技術(shù)能夠使轉(zhuǎn)換器以更高的切換頻率進行運作,最終使濾波器組件的體積與成本降至最低。

References

For more information about NexFET, visit: www.ti.com/mosfet.

發(fā)布者:博子

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動電源

在工業(yè)自動化蓬勃發(fā)展的當下,工業(yè)電機作為核心動力設(shè)備,其驅(qū)動電源的性能直接關(guān)系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅(qū)動電源設(shè)計中至關(guān)重要的兩個環(huán)節(jié),集成化方案的設(shè)計成為提升電機驅(qū)動性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機 驅(qū)動電源

LED 驅(qū)動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設(shè)備的使用壽命。然而,在實際應(yīng)用中,LED 驅(qū)動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設(shè)計、生...

關(guān)鍵字: 驅(qū)動電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動電源的公式,電感內(nèi)電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計 驅(qū)動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動汽車的核心技術(shù)之一是電機驅(qū)動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅(qū)動系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動汽車的動力性能和...

關(guān)鍵字: 電動汽車 新能源 驅(qū)動電源

在現(xiàn)代城市建設(shè)中,街道及停車場照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動電源 LED

LED通用照明設(shè)計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現(xiàn)在的LED驅(qū)動電源

關(guān)鍵字: LED 驅(qū)動電源 開關(guān)電源

LED驅(qū)動電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動電源
關(guān)閉