www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當(dāng)前位置:首頁 > 技術(shù)學(xué)院 > 技術(shù)前線
[導(dǎo)讀]去耦電容主要用于抑制電源電壓波動,為芯片提供瞬態(tài)電流補(bǔ)償。例如,當(dāng)芯片突然需要大電流時,去耦電容能快速補(bǔ)充電荷,避免電源軌電壓跌落。旁路電容針對高速數(shù)字電路(信號上升/下降時間短、主頻>500kHz),吸收高頻噪聲和浪涌電壓,防止干擾通過電源路徑傳播。

去耦電容和旁路電容是保障電源穩(wěn)定性和信號完整性的核心元件。盡管它們的原理和作用常被討論,但實際布局中的細(xì)節(jié)往往決定成敗。

PCB設(shè)計過程中,你是否經(jīng)歷過這樣的情景?電路板上分散大小不同的許多電容,較低阻抗電源也已連接到地,卻依然不知道到底——需要多少電容。你是否想過,或許是因為我們忽略了使用去耦的目的?許多相關(guān)文獻(xiàn)表明,必須使用大小不同的許多電容來降低功率傳輸系統(tǒng)(PDS)的阻抗,但這并不完全正確。相反,僅需選擇正確大小和正確種類的電容就能降低PDS阻抗。

去耦電容

去耦電容用于濾除輸出信號的干擾,通常用于不需要交流電的放大器電路中,用來消除自激,使放大器溫度工作。在嘈雜的環(huán)境中,電磁波會在導(dǎo)體中感應(yīng)出電壓信號,影響回路中的元器件,而在數(shù)字電路中國,由于關(guān)鍵位置的干擾,器件容易產(chǎn)生錯誤信號,從而引起錯誤的動作。去耦電容可以減少上述情況,去耦電容一般放置在元器件的電源處,以減少布線阻抗對濾波效果的影響,大多數(shù)去耦電容都是陶瓷電容,其值的電壓信號最快的上升和下降速度決定。

去耦電容的作用

1、去除高頻:去耦電容主要用于去除通過電磁輻射進(jìn)入設(shè)備的射頻信號等高頻干擾。去耦電容提供和吸收集成電路開合時的瞬時充放電能量,繞過了設(shè)備的高頻噪聲。從微觀上看,高頻器件工作時,其電流是不連續(xù)的,頻率很高,器件VCC與主電源之間有一定的距離。在高頻下,阻抗Z為:而且線路的電感也會很大,不能及時給設(shè)備供電。去耦電容可以彌補(bǔ)這一點(diǎn)不足。

2、為有源器件提供直流電源:當(dāng)有源器件打開和關(guān)閉時,會產(chǎn)生高頻噪聲并沿電源線傳輸。去耦電容的主要作用是為有源器件提供本地直流電源,以減少PCB板上開關(guān)噪聲的傳播,并將噪聲引至地。

一、基礎(chǔ)概念與核心作用

去耦電容:主要用于抑制電源電壓波動,為芯片提供瞬態(tài)電流補(bǔ)償。例如,當(dāng)芯片突然需要大電流時,去耦電容能快速補(bǔ)充電荷,避免電源軌電壓跌落。

旁路電容:針對高速數(shù)字電路(信號上升/下降時間短、主頻>500kHz),吸收高頻噪聲和浪涌電壓,防止干擾通過電源路徑傳播。

二、布局五大黃金原則

1. 流經(jīng)原則:電流路徑必須優(yōu)先經(jīng)過電容

? 錯誤做法:電源先進(jìn)入芯片引腳,再通過電容接地。

? 正確方案:電容應(yīng)緊鄰電源引腳,電流路徑為:電源輸入→電容→芯片。此設(shè)計可最小化回路電感,提升瞬態(tài)響應(yīng)速度。

2. 順序原則:先大后小,分級濾波

? 容量搭配:例如10μF電解電容(低頻儲能)+0.1μF陶瓷電容(高頻濾波)。大電容負(fù)責(zé)低頻噪聲抑制,小電容應(yīng)對高頻干擾。

? 布局順序:大電容距離芯片稍遠(yuǎn)(如2-3cm),小電容緊貼引腳。避免大小電容并聯(lián)時因寄生電感形成諧振。

3. 就近原則:小電容必須貼緊引腳

? 關(guān)鍵數(shù)據(jù):電容與引腳的距離每增加1cm,回路電感增加約10nH。對于0.1μF電容,超過2cm的走線會導(dǎo)致其自諧振頻率降至10MHz以下,失去高頻濾波能力。

? 操作建議:0402封裝電容的引腳焊盤與芯片電源引腳間距≤0.3mm,走線寬度≥0.2mm以降低阻抗。

4. 共地原則:統(tǒng)一參考平面,拒絕過孔“斷鏈”

? 錯誤案例:多顆電容分別通過不同過孔接地,導(dǎo)致地電位不一致。

? 正確方案:所有電容的接地端連接至同一層完整地平面,優(yōu)先使用通孔(via)直接連接,避免過孔串聯(lián)。實測表明,共地設(shè)計可使噪聲抑制效率提升40%。

5. 一對一原則:每個電源引腳獨(dú)立配置

? 典型錯誤:多個電源引腳共用一個電容。

? 后果:當(dāng)某引腳電流突變時,其他引腳的電容無法及時響應(yīng),導(dǎo)致電壓波動。

? 解決方案:即使同一芯片的相鄰電源引腳,也應(yīng)分別配置獨(dú)立電容,間距建議≤1mm。

三、模擬電路的特殊處理

對于運(yùn)放、ADC等模擬芯片,旁路電容需遵循更嚴(yán)苛的規(guī)則:

獨(dú)立供電路徑:每級運(yùn)放的電源引腳必須配置獨(dú)立電容,避免級間串?dāng)_。

磁珠隔離:在多級運(yùn)放的電源路徑中串聯(lián)磁珠(如100Ω@100MHz),可抑制高頻噪聲跨級傳播。

布局隔離:模擬電源區(qū)域與數(shù)字電源區(qū)域需用隔離帶(如0.5mm寬地線)分割,防止噪聲耦合。

四、高頻場景優(yōu)化方案

超高頻噪聲抑制(>100MHz)

? 采用0.01μF陶瓷電容(X7R材質(zhì)),其自諧振頻率可達(dá)500MHz以上。

? 在芯片電源引腳與地之間并聯(lián)多個不同容值電容(如0.01μF+0.1μF+1μF),覆蓋全頻段噪聲。

電源完整性強(qiáng)化

? 使用帶屏蔽層的電容(如Murata GRM系列),減少電場輻射。

? 在PCB頂層和內(nèi)層分別布置電容,形成立體濾波網(wǎng)絡(luò)。

疊層架構(gòu)與去耦電容協(xié)同設(shè)計

六層板疊層優(yōu)化

推薦采用非對稱疊層結(jié)構(gòu)(Top-GND-Sig1-Power-Sig2-GND),通過雙地平面形成電磁屏蔽層。關(guān)鍵參數(shù)設(shè)計包括:

電源層與相鄰地平面間距:0.2mm(FR4材料)

信號層微帶線阻抗:50Ω±5%(采用SI9000場求解工具驗證)

跨層過孔背鉆深度:控制在板厚±10%以內(nèi)

去耦電容分級布局

建立三級去耦體系實現(xiàn)全頻段覆蓋:

芯片級:0402封裝1nF MLCC(諧振頻率2.4GHz)緊貼BGA引腳,間距≤1mm

模塊級:0603封裝10nF+100nF組合,形成100MHz-1GHz帶通濾波

系統(tǒng)級:3216封裝4.7μF鉭電容,抑制10MHz以下低頻紋波

電源平面諧振抑制關(guān)鍵技術(shù)

平面腔體諧振建模

電源-地平面構(gòu)成的諧振腔在特定頻率產(chǎn)生駐波,某6層板實測數(shù)據(jù)表明:

平面尺寸120×80mm時,基模諧振頻率為780MHz

二次諧波諧振頻率達(dá)1.56GHz,與5G NR n78頻段重合

諧振點(diǎn)處噪聲幅值增加15dB,導(dǎo)致誤碼率上升3個數(shù)量級

動態(tài)抑制方法

腔體結(jié)構(gòu)重構(gòu)

在諧振區(qū)域?qū)嵤┲悄芡诳眨?

挖空面積與諧振區(qū)1:1映射

邊緣采用漸變齒狀結(jié)構(gòu),降低Q值

某毫米波雷達(dá)案例中,780MHz噪聲衰減達(dá)22dB

分布式電容陣列

在電源平面關(guān)鍵節(jié)點(diǎn)植入嵌入式電容:

采用AVX LSC系列薄型電容(0.5mm厚度)

陣列間距λ/10(780MHz對應(yīng)38mm間距)

降低平面阻抗峰值35%

三維布局優(yōu)化與工藝控制

過孔陣列優(yōu)化

雙面過孔設(shè)計:每個電容焊盤兩側(cè)布置0.2mm微孔

過孔深度比:1:1.2(頂層-內(nèi)層)

背鉆殘留段差:≤50μm,減少樁效應(yīng)

某112Gbps光模塊實測顯示,優(yōu)化后插入損耗降低0.8dB/inch@28GHz,同時將諧振峰位移至工作頻帶外。

材料與工藝創(chuàng)新

低損耗介質(zhì):Nelco N4000-13EPSI(Dk=3.2,Df=0.002)

銅箔粗糙度控制:RTF銅箔Rz≤2μm

激光直接成像(LDI):線寬公差±3μm

系統(tǒng)級驗證體系

量產(chǎn)控制標(biāo)準(zhǔn)

阻抗測試:TDR檢測公差±5%

諧振掃描:VNA頻響檢測(0.1-10GHz)

熱循環(huán)測試:-55℃~125℃ 1000次循環(huán)后阻抗漂移≤10%

通過上述創(chuàng)新,六層PCB的電源噪聲容限有望從±5%提升至±2%,為6G通信與AI算力芯片提供基礎(chǔ)支撐。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險,如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運(yùn)營商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術(shù)學(xué)會聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(shù)(集團(tuán))股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉