電路的功能文氏電橋電路一直被作為正弦波發(fā)生電路使用,需要在低頻范圍產(chǎn)生低失真波形時可以采用這樣電路。改變電阻RO或電容器CO可獲得數(shù)百千赫茲以下的振蕩頻率。電路工作原理振蕩原理是當(dāng)環(huán)路內(nèi)移相量是0度或360度
電路的功能由于受放大器頻率特性和寄生電容的影響,要制作數(shù)面千赫茲以上的有源濾波器非常困難。另一方面既然用LC電路構(gòu)成的低通濾波器,線圈L的電感量和電路的體積都比較大,但頻率在兆赫以上時可以做到小型化,有實
電路的功能帶通濾波器為了獲得銳衰減特性而采用較大的Q值。當(dāng)需要縮小通事寬度,只取某種程度的頻帶和衰減度時,則可采用雙調(diào)諧電路。電路工作原理該電路是把兩個多重反饋帶通濾波器進(jìn)行級聯(lián),為了使特性有一定的平坦
電路的功能控制源式帶通濾波器必須由兩個放大器構(gòu)成,并需要4個電阻和4個電容,而MFB式帶通濾波器只需3個電阻、2個電容便可簡單地構(gòu)成調(diào)諧電路,因而是一種簡便的有源濾波器,此外,它還可隨意設(shè)定通帶放大倍數(shù)。電路
電路的功能通常濾波器通事不具有增益,當(dāng)外圍電路要求通事必須具有增益時,可以采用多重反反饋式濾波器,這種濾波器的增益通過改變電路參數(shù)可隨意設(shè)定。電路工作原理OP放大器反相工作,所以輸入、輸出間相位要反相,
電路的功能控制源式濾波器要選用大的通事增益,電路設(shè)計非學(xué)麻煩。若采用多重反饋式,只要在計算參數(shù)時考慮增益因素,則很容易構(gòu)成AO=1~10的低通濾波器。電路工作原理反相OP放大器,通事的相位要倒相,決定電路增益A
在高頻率電路中,常使用到由L與C所構(gòu)成的振蕩電路。在此,說明LC振蕩器的工作原理。首先介紹的是稱呼為哈特萊(Hartley)型的振蕩電路。其振蕩頻率為10M~20MHz。LC振蕩器的概要圖2所示的為此次所制作的振蕩器的方塊圖。
LC振蕩電路除了哈特萊振蕩電路以外,考畢茲(Colpitz)振蕩電路也很普遍。在此針對考畢茲振蕩電路的工作原理原理,以及其主要應(yīng)用之一的Dip Meter的制作提出說明。 Dip Meter主要用來做為頻率測試之用,尤其在高頻率
電路的功能本電路是使用了有源濾波器的諧振電路,與LC并聯(lián)諧振電路等效。它可以隨意設(shè)定諧振頻率FO、諧振特性Q值及諧振時的放大倍數(shù)A。在LC諧振電路,如果諧振頻率低線圈的電感量就要大,如果電路對體積的重量均有要
通過對FPGA內(nèi)部信號的捕獲測試,可以實現(xiàn)對系統(tǒng)設(shè)計缺陷的實時分析和修正。與外部測試設(shè)備相比,可以總結(jié)出SignalTapII ELA的幾點優(yōu)越性:不占用額外的I/O引腳,不占用PCB上的空間,不破壞信號的時序和完整性,不需額外費用;從多方面證實,該測試手段可以減少調(diào)試時間,縮短設(shè)計周期。
基于子帶分解的自適應(yīng)濾波器在提高收斂性能的同時又可以節(jié)省一定的計算量。采用Altera公司的仿真軟件Altera DSP Builder和QuartusⅡ7.2進(jìn)行子帶分解的NLMS算法的自適應(yīng)濾波器現(xiàn)場可編程門陣列設(shè)計,利用Simulink和ModelSim對設(shè)計方案進(jìn)行了模型仿真和功能仿真,達(dá)到較好的效果。
本文基于32位微處理器AEMB設(shè)計了一款SoC系統(tǒng)驗證平臺,給出了SoC系統(tǒng)經(jīng)過FPGA綜合后的邏輯資源占用情況,以及系統(tǒng)能夠運(yùn)行的最高時鐘頻率。該平臺已在臺灣友晶公司的DE2-70開發(fā)板上完成了FPGA驗證。
電路的功能線性驅(qū)動直流伺服電機(jī)時,如輸出晶體管的功率下降,發(fā)熱量就會增加。大功率條件下,大多采用象本電路那樣的脈沖調(diào)幅驅(qū)動方式。通過晶體管的開關(guān)切換作用來提高功率控制發(fā)熱。PWM電路也可采用分立元件組成。
電路的功能關(guān)于PWM波的產(chǎn)生,采用最多的方法是用電壓比較器把要調(diào)制的信號與線性好的三角波進(jìn)行比較。本電路可用數(shù)字據(jù)以1%為1檔在1%~99%范圍內(nèi)準(zhǔn)確無誤而穩(wěn)定地控制占空比。因此,它可用作校準(zhǔn)、調(diào)整PWM解調(diào)電路或作
電路的功能同步檢波電路用來檢測被噪聲淹沒的信號,它是鎖相放大器最重要的電路單元,有許多實用方式。本電路屬于同步檢波的基本方式,用開關(guān)電路檢測相位差,輸出電壓EO=EXCOSφ,即可以獲得信號的振幅和相位φ。如