www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當(dāng)前位置:首頁 > 工業(yè)控制 > 電子設(shè)計(jì)自動化
[導(dǎo)讀]在電路設(shè)計(jì)過程中,應(yīng)用工程師往往會忽視印刷電路板(PCB)的布局。通常遇到的問題是,電路的原理圖是正確的,但并不起作用,或僅以低性能運(yùn)行。在本文中,我將向您介紹如何正確地布設(shè)運(yùn)算放大器的電路板以確保其功能、

在電路設(shè)計(jì)過程中,應(yīng)用工程師往往會忽視印刷電路板(PCB)的布局。通常遇到的問題是,電路的原理圖是正確的,但并不起作用,或僅以低性能運(yùn)行。在本文中,我將向您介紹如何正確地布設(shè)運(yùn)算放大器的電路板以確保其功能、性能和穩(wěn)健性。
最近,我與一名實(shí)習(xí)生在利用增益為2V/V、負(fù)荷為10k?、電源電壓為+/-15V的非反相配置OPA191運(yùn)算放大器進(jìn)行設(shè)計(jì)。圖1所示為該設(shè)計(jì)的原理圖。


圖1:采用非反相配置的OPA191]OPA191原理圖


我讓實(shí)習(xí)生為該設(shè)計(jì)布設(shè)電路板,同時(shí)為他做了PCB布設(shè)方面的一般指導(dǎo)(例如:盡可能縮短電路板的走線路徑,盡量將組件保持緊密排布,以減小電路板所占空間),然后讓他自行設(shè)計(jì)。設(shè)計(jì)過程到底有多難?其實(shí)就是幾個(gè)電阻器和電容器罷了,不是嗎?圖2所示為他首次嘗試設(shè)計(jì)的布局。紅線為電路板頂層的路徑,而藍(lán)線為底層的路徑。


圖2:首次布局嘗試方案


看到他的首次布局嘗試,我意識到了電路板布局并不像我想象的那樣直觀;我至少應(yīng)該為他做一些更詳細(xì)的指導(dǎo)。他在設(shè)計(jì)時(shí)完全遵從了我的建議:縮短了走線路徑,并將各部件緊密地排布在一起。但其實(shí)這種布局還有很大的改善空間,以便減小電路板寄生阻抗并優(yōu)化其性能。
接下來就是對布局的改進(jìn)。我們所做的首項(xiàng)改進(jìn)是將電阻R1和R2移至OPA191的倒相引腳(引腳2)旁;這樣有助于減小倒相引腳的雜散電容。運(yùn)算放大器的倒相引腳是一個(gè)高阻抗節(jié)點(diǎn),因此靈敏度較高。較長的走線路徑可以作為電線,讓高頻噪聲耦合進(jìn)信號鏈。倒相引腳上的PCB電容會引發(fā)穩(wěn)定性問題。因此,倒相引腳上的接點(diǎn)應(yīng)該越小越好。
將R1和R2移至引腳2旁,可以讓負(fù)荷電阻器R3旋轉(zhuǎn)180度,從而使去耦電容器C1更貼近OPA191的正電源引腳(引腳7)。讓去耦電容器盡可能貼近電源引腳,這一點(diǎn)極其重要。如果去耦電容器與電源引腳之間的走線路徑較長,會增大電源引腳的電感,從而降低性能。
我們所做的另一項(xiàng)改進(jìn)在于第二個(gè)去耦電容器C2。不應(yīng)將VCC與C2的導(dǎo)孔連接放在電容器和電源引腳之間,而應(yīng)布設(shè)在供電電壓必須通過電容器進(jìn)入器件電源引腳的位置。圖3顯示了移動每個(gè)部件和導(dǎo)孔從而改善布局的方法。


圖3:改進(jìn)布局的各部件位置

將各部件移至新位置后,仍可以做一些其他改進(jìn)。您可以加寬走線路徑,以減小電感,即相當(dāng)于走線路徑所連接的焊盤尺寸。還可以灌流電路板頂層和底層的接地層,從而為返回電流創(chuàng)造一個(gè)堅(jiān)實(shí)的低阻抗路徑。圖4所示為我們的最終布局。


圖4:最終布局


下一次當(dāng)您布設(shè)印刷電路板時(shí),建議您遵循以下布設(shè)慣例:
盡量縮短倒相引腳的連接。
讓去耦電容器盡量靠近電源引腳。
如果使用了多個(gè)去耦電容器,將最小的去耦電容器放在離電源引腳最近的位置。
不要將導(dǎo)孔置于去耦電容和電源引腳之間。
盡可能擴(kuò)寬走線路徑。
不要讓走線路徑上出現(xiàn)90度的角。
灌流至少一個(gè)堅(jiān)實(shí)的接地層。
不要為了用絲印層來標(biāo)示部件而舍棄良好的布局。
上文中,我們談到了布局儀表放大器(運(yùn)放)PCB的正確方法,并提供了一系列可供參考的良好布局實(shí)踐。接下來,將探討布局儀表放大器(instrumentation amplifier,INA)時(shí)常見的錯(cuò)誤,然后展示INA PCB如何正確布局。
INA 用于要求放大差分電壓的應(yīng)用,如測量通過高側(cè)電流感應(yīng)應(yīng)用中分流電阻的電壓。圖5所示為典型單電源高側(cè)電流感應(yīng)電路的原理圖。


圖5:高側(cè)電流感應(yīng)原理圖


圖5測量的是通過RSHUNT的差分電壓,R1、R2、C1、C2和C3用于提供共模和差模濾波,R3和C4提供U1 INA的輸出濾波,U2用于緩沖INA的參考引腳。R4和C5用于形成低通濾波器,將運(yùn)放給INA參考引腳帶來的噪音降至最低。
雖然圖5中的原理圖布局看起來很直觀,但卻非常容易在PCB布局中出錯(cuò),造成電路性能下降。圖6顯示了工作人員在檢查INA布局時(shí)常見的三種錯(cuò)誤。


圖6:INA常見PCB布局


從上圖可見,第一個(gè)錯(cuò)誤是對通過電阻器差分電壓Rshunt的測量方式??梢钥吹絉shunt到R2的線路較短,因此其電阻要小于Rshunt到R1線路的電阻。這一線路阻抗上的差異可能會引入INA的輸入偏置電流在U1輸入側(cè)造成差分電壓。由于INA的任務(wù)是放大差分電壓,因此,如果輸入側(cè)的線路不平衡可能會導(dǎo)致出現(xiàn)錯(cuò)誤。因此,需確保INA輸入線路的平衡并盡可能短。
第二個(gè)錯(cuò)誤則是關(guān)于INA增益設(shè)置電阻Rgain的。U1引腳到Rgain焊墊的線路長于實(shí)際所需長度,因此會造成額外的電阻和電容。由于增益取決于INA增益設(shè)置引腳、引腳1和引腳8之間的電阻,額外的電阻可能帶來錯(cuò)誤的目標(biāo)增益。而由于INA的增益設(shè)置引腳連接著INA內(nèi)的反饋節(jié),額外的電容可能造成穩(wěn)定性問題。因此,需確保連接增益設(shè)置電阻的線路應(yīng)盡可能短。
最后,可能需要改進(jìn)緩沖電路參考引腳的位置。參考引腳緩沖電路位于距離參考引腳較遠(yuǎn)的位置,這可能增加連接參考引腳的電阻,導(dǎo)致噪聲或其他信號可能耦合到線路中。參考引腳上額外的電阻可能會降低大多數(shù)INA提供的高共模抑制比(CMRR)。因此,需將參考引腳緩沖電路安排在盡可能靠近INA參考引腳的位置。


圖7:糾正三類錯(cuò)誤后的PCB布局


在圖7中,可以看到R1和R2到分流電阻的線路長度相同,并采用了一個(gè)開爾文連接。增益設(shè)置電阻到INA引腳的線路做到了盡可能短,基準(zhǔn)緩沖電路也盡可能靠近參考引腳。
如果您今后要為INA布局PCB,請確保遵循以下原則:
確保輸入側(cè)所有線路完全平衡;
減少線路長度并最大程度降低增益設(shè)置引腳上的電容;
將基準(zhǔn)緩沖電路安排在盡可能靠近INA參考引腳的位置;
將解耦電容安排在盡可能靠近電源引腳的位置;
至少覆設(shè)一個(gè)實(shí)心接地層;
不要為了給元件使用絲印而犧牲良好的布局;
遵循本文第一部分中提到的指南

2次

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

2025 IPC CEMAC電子制造年會將于9月25日至26日在上海舉辦。年會以“Shaping a Sustainable Future(共塑可持續(xù)未來)”為主題,匯聚國內(nèi)外專家學(xué)者、產(chǎn)業(yè)領(lǐng)袖與制造精英,圍繞先進(jìn)封裝、...

關(guān)鍵字: PCB 電子制造 AI

2025 IPC CEMAC電子制造年會將于9月25日至26日在上海浦東新區(qū)舉辦。年會以“Shaping a Sustainable Future(共塑可持續(xù)未來)”為主題,匯聚國內(nèi)外專家學(xué)者、產(chǎn)業(yè)領(lǐng)袖與制造精英,圍繞先...

關(guān)鍵字: PCB AI 數(shù)字化

在PCB制造過程中,孔無銅現(xiàn)象作為致命性缺陷之一,直接導(dǎo)致電氣連接失效和產(chǎn)品報(bào)廢。該問題涉及鉆孔、化學(xué)處理、電鍍等全流程,其成因復(fù)雜且相互交織。本文將從工藝機(jī)理、材料特性及設(shè)備控制三個(gè)維度,系統(tǒng)解析孔無銅的根源并提出解決...

關(guān)鍵字: PCB 孔無銅

在電子制造領(lǐng)域,PCB孔銅斷裂是導(dǎo)致電路失效的典型問題,其隱蔽性與破壞性常引發(fā)批量性質(zhì)量事故。本文結(jié)合實(shí)際案例與失效分析數(shù)據(jù),系統(tǒng)梳理孔銅斷裂的五大核心原因,為行業(yè)提供可落地的解決方案。

關(guān)鍵字: PCB 孔銅斷裂

在電子制造領(lǐng)域,噴錫板(HASL,Hot Air Solder Levelling)因成本低廉、工藝成熟,仍占據(jù)中低端PCB市場30%以上的份額。然而,隨著無鉛化趨勢推進(jìn),HASL工藝的拒焊(Non-Wetting)與退...

關(guān)鍵字: PCB 噴錫板 HASL

在PCB制造過程中,阻焊油墨作為關(guān)鍵功能層,其質(zhì)量直接影響產(chǎn)品可靠性。然而,油墨氣泡、脫落、顯影不凈等異常問題長期困擾行業(yè),尤其在5G通信、汽車電子等高可靠性領(lǐng)域,阻焊缺陷導(dǎo)致的失效占比高達(dá)15%-20%。本文結(jié)合典型失...

關(guān)鍵字: PCB 阻焊油墨

在5G通信、新能源汽車、工業(yè)控制等高功率密度應(yīng)用場景中,傳統(tǒng)有機(jī)基板已難以滿足散熱與可靠性需求。陶瓷基板憑借其高熱導(dǎo)率、低熱膨脹系數(shù)及優(yōu)異化學(xué)穩(wěn)定性,成為功率器件封裝的核心材料。本文從PCB設(shè)計(jì)規(guī)范與陶瓷基板導(dǎo)入標(biāo)準(zhǔn)兩大...

關(guān)鍵字: PCB 陶瓷基板

在電子制造領(lǐng)域,PCB(印刷電路板)作為核心組件,其質(zhì)量直接影響整機(jī)性能與可靠性。然而,受材料、工藝、環(huán)境等多重因素影響,PCB生產(chǎn)過程中常出現(xiàn)短路、開路、焊接不良等缺陷。本文基于行業(yè)實(shí)踐與失效分析案例,系統(tǒng)梳理PCB常...

關(guān)鍵字: PCB 印刷電路板

在PCB(印制電路板)制造過程中,感光阻焊油墨作為保護(hù)電路、防止焊接短路的關(guān)鍵材料,其性能穩(wěn)定性直接影響產(chǎn)品良率與可靠性。然而,受工藝參數(shù)、材料特性及環(huán)境因素影響,油墨異?,F(xiàn)象頻發(fā)。本文聚焦顯影不凈、黃變、附著力不足等典...

關(guān)鍵字: PCB 感光阻焊油墨 印制電路板

在電子制造領(lǐng)域,印刷電路板(PCB)的表面處理工藝直接影響其可靠性、信號完整性和使用壽命。其中,化學(xué)鍍鎳浸金(ENIG,俗稱“鍍金”)與有機(jī)保焊劑(OSP)是兩種主流工藝,但它們在失效模式、應(yīng)用場景及成本效益上存在顯著差...

關(guān)鍵字: PCB OSP工藝
關(guān)閉