www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當前位置:首頁 > 公眾號精選 > 21ic電子網(wǎng)
[導讀]Java 語言的每個關鍵字都設計的很巧妙,金雕玉琢,只有深度鉆研其中,才知其中懊悔,本文帶領大家一起深入理解 Java 內(nèi)存模型之 final。 與鎖和 volatile 相比較,對 final 域的讀和寫更像是普通的變量訪問。對于 final 域,編譯器和處理器要遵守兩個重排序規(guī)

Java 語言的每個關鍵字都設計的很巧妙,金雕玉琢,只有深度鉆研其中,才知其中懊悔,本文帶領大家一起深入理解 Java 內(nèi)存模型之 final。


與鎖和 volatile 相比較,對 final 域的讀和寫更像是普通的變量訪問。對于 final 域,編譯器和處理器要遵守兩個重排序規(guī)則:
  1. 在構造函數(shù)內(nèi)對一個 final 域的寫入,與隨后把這個被構造對象的引用賦值給一個引用變量,這兩個操作之間不能重排序。

  2. 初次讀一個包含 final 域的對象的引用,與隨后初次讀這個 final 域,這兩個操作之間不能重排序。

下面,我們通過一些示例性的代碼來分別說明這兩個規(guī)則:
 
public class FinalExample { int i; // 普通變量 final int j; //final 變量 static FinalExample obj; public void FinalExample () { // 構造函數(shù) i = 1; // 寫普通域 j = 2; // 寫 final 域 } public static void writer () { // 寫線程 A 執(zhí)行 obj = new FinalExample ();   } public static void reader () { // 讀線程 B 執(zhí)行 FinalExample object = obj; // 讀對象引用 int a = object.i; // 讀普通域 int b = object.j; // 讀 final 域 } }
這里假設一個線程 A 執(zhí)行 writer () 方法,隨后另一個線程 B 執(zhí)行 reader () 方法。下面我們通過這兩個線程的交互來說明這兩個規(guī)則。

寫 final 域的重排序規(guī)則

寫 final 域的重排序規(guī)則禁止把 final 域的寫重排序到構造函數(shù)之外。這個規(guī)則的實現(xiàn)包含下面 2 個方面:
  • JMM 禁止編譯器把 final 域的寫重排序到構造函數(shù)之外。

  • 編譯器會在 final 域的寫之后,構造函數(shù) return 之前,插入一個 StoreStore 屏障。這個屏障禁止處理器把 final 域的寫重排序到構造函數(shù)之外。

現(xiàn)在讓我們分析 writer () 方法。writer () 方法只包含一行代碼:finalExample = new FinalExample ()。這行代碼包含兩個步驟:
  1. 構造一個 FinalExample 類型的對象;

  2. 把這個對象的引用賦值給引用變量 obj。

假設線程 B 讀對象引用與讀對象的成員域之間沒有重排序(馬上會說明為什么需要這個假設),這是一種可能的執(zhí)行時序,寫普通域的操作被編譯器重排序到了構造函數(shù)之外,讀線程 B 錯誤的讀取了普通變量 i 初始化之前的值。而寫 final 域的操作,被寫 final 域的重排序規(guī)則“限定”在了構造函數(shù)之內(nèi),讀線程 B 正確的讀取了 final 變量初始化之后的值。
寫 final 域的重排序規(guī)則可以確保:在對象引用為任意線程可見之前,對象的 final 域已經(jīng)被正確初始化過了,而普通域不具有這個保障。以上圖為例,在讀線程 B“看到”對象引用 obj 時,很可能 obj 對象還沒有構造完成(對普通域 i 的寫操作被重排序到構造函數(shù)外,此時初始值 2 還沒有寫入普通域 i)。

讀 final 域的重排序規(guī)則

讀 final 域的重排序規(guī)則如下:
  • 在一個線程中,初次讀對象引用與初次讀該對象包含的 final 域,JMM 禁止處理器重排序這兩個操作(注意,這個規(guī)則僅僅針對處理器)。編譯器會在讀 final 域操作的前面插入一個 LoadLoad 屏障。
初次讀對象引用與初次讀該對象包含的 final 域,這兩個操作之間存在間接依賴關系。由于編譯器遵守間接依賴關系,因此編譯器不會重排序這兩個操作。大多數(shù)處理器也會遵守間接依賴,大多數(shù)處理器也不會重排序這兩個操作。但有少數(shù)處理器允許對存在間接依賴關系的操作做重排序(比如 alpha 處理器),這個規(guī)則就是專門用來針對這種處理器。reader() 方法包含三個操作:
  1. 初次讀引用變量 obj;

  2. 初次讀引用變量 obj 指向?qū)ο蟮钠胀ㄓ?j。

  3. 初次讀引用變量 obj 指向?qū)ο蟮?final 域 i。

現(xiàn)在我們假設寫線程 A 沒有發(fā)生任何重排序,同時程序在不遵守間接依賴的處理器上執(zhí)行,下面是一種可能的執(zhí)行時序:來,跟我一起干掉“final” 在上圖中,讀對象的普通域的操作被處理器重排序到讀對象引用之前。讀普通域時,該域還沒有被寫線程 A 寫入,這是一個錯誤的讀取操作。而讀 final 域的重排序規(guī)則會把讀對象 final 域的操作“限定”在讀對象引用之后,此時該 final 域已經(jīng)被 A 線程初始化過了,這是一個正確的讀取操作。讀 final 域的重排序規(guī)則可以確保:在讀一個對象的 final 域之前,一定會先讀包含這個 final 域的對象的引用。在這個示例程序中,如果該引用不為 null,那么引用對象的 final 域一定已經(jīng)被 A 線程初始化過了。

# 如果 final 域是引用類型

上面我們看到的 final 域是基礎數(shù)據(jù)類型,下面讓我們看看如果 final 域是引用類型,將會有什么效果?請看下列示例代碼:
 
public class FinalReferenceExample { final int[] intArray; //final 是引用類型 static FinalReferenceExample obj; public FinalReferenceExample () { // 構造函數(shù) intArray = new int[ 1]; //1 intArray[ 0] = 1; //2 } public static void writerOne () { // 寫線程 A 執(zhí)行 obj = new FinalReferenceExample (); //3 } public static void writerTwo () { // 寫線程 B 執(zhí)行 obj.intArray[ 0] = 2; //4 } public static void reader () { // 讀線程 C 執(zhí)行 if (obj != null) { //5 int temp1 = obj.intArray[ 0]; //6 }   } }
這里 final 域為一個引用類型,它引用一個 int 型的數(shù)組對象。對于引用類型,寫 final 域的重排序規(guī)則對編譯器和處理器增加了如下約束:
  1. 在構造函數(shù)內(nèi)對一個 final 引用的對象的成員域的寫入,與隨后在構造函數(shù)外把這個被構造對象的引用賦值給一個引用變量,這兩個操作之間不能重排序。
對上面的示例程序,我們假設首先線程 A 執(zhí)行 writerOne() 方法,執(zhí)行完后線程 B 執(zhí)行 writerTwo() 方法,執(zhí)行完后線程 C 執(zhí)行 reader () 方法。下面是一種可能的線程執(zhí)行時序:來,跟我一起干掉“final” 在上圖中,1 是對 final 域的寫入,2 是對這個 final 域引用的對象的成員域的寫入,3 是把被構造的對象的引用賦值給某個引用變量。這里除了前面提到的 1 不能和 3 重排序外,2 和 3 也不能重排序。JMM 可以確保讀線程 C 至少能看到寫線程 A 在構造函數(shù)中對 final 引用對象的成員域的寫入。即 C 至少能看到數(shù)組下標 0 的值為 1。而寫線程 B 對數(shù)組元素的寫入,讀線程 C 可能看的到,也可能看不到。JMM 不保證線程 B 的寫入對讀線程 C 可見,因為寫線程 B 和讀線程 C 之間存在數(shù)據(jù)競爭,此時的執(zhí)行結果不可預知。如果想要確保讀線程 C 看到寫線程 B 對數(shù)組元素的寫入,寫線程 B 和讀線程 C 之間需要使用同步原語(lock 或 volatile)來確保內(nèi)存可見性。

為什么 final 引用不能從構造函數(shù)內(nèi)“逸出”

前面我們提到過,寫 final 域的重排序規(guī)則可以確保:在引用變量為任意線程可見之前,該引用變量指向的對象的 final 域已經(jīng)在構造函數(shù)中被正確初始化過了。其實要得到這個效果,還需要一個保證:在構造函數(shù)內(nèi)部,不能讓這個被構造對象的引用為其他線程可見,也就是對象引用不能在構造函數(shù)中“逸出”。為了說明問題,讓我們來看下面示例代碼:
 
public class FinalReferenceEscapeExample { final int i; static FinalReferenceEscapeExample obj; public FinalReferenceEscapeExample () {     i = 1; //1 寫 final 域 obj = this; //2 this 引用在此“逸出” } public static void writer() { new FinalReferenceEscapeExample ();   } public static void reader { if (obj != null) { //3 int temp = obj.i; //4 }   } }
假設一個線程 A 執(zhí)行 writer() 方法,另一個線程 B 執(zhí)行 reader() 方法。這里的操作 2 使得對象還未完成構造前就為線程 B 可見。即使這里的操作 2 是構造函數(shù)的最后一步,且即使在程序中操作 2 排在操作 1 后面,執(zhí)行 read() 方法的線程仍然可能無法看到 final 域被初始化后的值,因為這里的操作 1 和操作 2 之間可能被重排序。實際的執(zhí)行時序可能如下圖所示:來,跟我一起干掉“final” 從上圖我們可以看出:在構造函數(shù)返回前,被構造對象的引用不能為其他線程可見,因為此時的 final 域可能還沒有被初始化。在構造函數(shù)返回后,任意線程都將保證能看到 final 域正確初始化之后的值。

# final 語義在處理器中的實現(xiàn)

現(xiàn)在我們以 x86 處理器為例,說明 final 語義在處理器中的具體實現(xiàn)。上面我們提到,寫 final 域的重排序規(guī)則會要求譯編器在 final 域的寫之后,構造函數(shù) return 之前,插入一個 StoreStore 障屏。讀 final 域的重排序規(guī)則要求編譯器在讀 final 域的操作前面插入一個 LoadLoad 屏障。由于 x86 處理器不會對寫 - 寫操作做重排序,所以在 x86 處理器中,寫 final 域需要的 StoreStore 障屏會被省略掉。同樣,由于 x86 處理器不會對存在間接依賴關系的操作做重排序,所以在 x86 處理器中,讀 final 域需要的 LoadLoad 屏障也會被省略掉。也就是說在 x86 處理器中,final 域的讀 / 寫不會插入任何內(nèi)存屏障!

JSR-133 為什么要增強 final 的語義

在舊的 Java 內(nèi)存模型中 ,最嚴重的一個缺陷就是線程可能看到 final 域的值會改變。比如,一個線程當前看到一個整形 final 域的值為 0(還未初始化之前的默認值),過一段時間之后這個線程再去讀這個 final 域的值時,卻發(fā)現(xiàn)值變?yōu)榱?1(被某個線程初始化之后的值)。最常見的例子就是在舊的 Java 內(nèi)存模型中,String 的值可能會改變(參考文獻 2 中有一個具體的例子,感興趣的讀者可以自行參考,這里就不贅述了)。為了修補這個漏洞,JSR-133 專家組增強了 final 的語義。通過為 final 域增加寫和讀重排序規(guī)則,可以為 java 程序員提供初始化安全保證:只要對象是正確構造的(被構造對象的引用在構造函數(shù)中沒有“逸出”),那么不需要使用同步(指 lock 和 volatile 的使用),就可以保證任意線程都能看到這個 final 域在構造函數(shù)中被初始化之后的值。
來,跟我一起干掉“final”
來源:https://urlify.cn/ruYFJv

免責聲明:本文內(nèi)容由21ic獲得授權后發(fā)布,版權歸原作者所有,本平臺僅提供信息存儲服務。文章僅代表作者個人觀點,不代表本平臺立場,如有問題,請聯(lián)系我們,謝謝!

21ic電子網(wǎng)

掃描二維碼,關注更多精彩內(nèi)容

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權益,請及時聯(lián)系本站刪除。
關閉
關閉