隨著摩爾定律逼近物理極限,Chiplet(芯粒)技術通過將大型SoC(系統(tǒng)級芯片)解構為可獨立制造的模塊化芯粒,成為延續(xù)半導體性能提升的關鍵路徑。然而,Chiplet設計面臨三大核心挑戰(zhàn):異構芯粒間的互連性能瓶頸、多物理場耦合效應的精確建模,以及復雜架構下的自動化設計效率。比昂芯科技推出的BTD-Chiplet 2.0平臺,通過AI驅(qū)動的自動化布線算法與多物理場仿真引擎,為Chiplet設計提供了從架構探索到物理實現(xiàn)的完整解決方案。
在電子技術飛速發(fā)展的今天,電源 PCB(印刷電路板)設計在各種電子設備中扮演著至關重要的角色。隨著信號頻率的不斷提高和電路復雜度的增加,阻抗匹配問題成為影響電源 PCB 性能的關鍵因素之一。阻抗不連續(xù)現(xiàn)象的出現(xiàn),會對電源信號的傳輸產(chǎn)生嚴重干擾,導致設備性能下降,甚至無法正常工作。因此,深入研究電源 PCB 設計中阻抗不連續(xù)的原因、影響及解決方法,具有重要的理論和實際意義。
這些球附著在機器人的關節(jié)上,這有助于我們的計算機視覺軟件輕松區(qū)分和跟蹤每個關節(jié)。計算機視覺檢測并在被檢測對象周圍繪制一個邊界框。這有助于識別機器人末端執(zhí)行器的運動,并刪除我們的機器人繪制的形狀。計算機視覺稍后也可以用來操縱機器人。
我想和大家分享我的DIY遙控車的項目,在車上實現(xiàn)機器學習模型,這可能會給它帶來自主功能。下一個生物就在這里,稍低一點。我受到了新技術,機器人,無人機的啟發(fā),并決定做一些與這個領域相關的事情。有一種想法是制造一種帶有遙控器的東西,它可以飛行或駕駛,有可能播放視頻和探測物體。我使用樹莓板+攝像頭作為圖像處理單元,檢測物體。Arduino Mega 2560以無線電模塊為硬件核心來驅(qū)動汽車。此時通過SSH流建立視頻傳輸。所以,讓我們繼續(xù)前進吧!
我們開始探索如何使用手勢識別和嵌入式機器學習來控制物理模型。我們的目標是展示如何利用這些技術來創(chuàng)造直觀、身臨其境的體驗,讓用戶以一種更自然、更免提的方式與模型或環(huán)境互動。
隨著半導體工藝進入7nm及以下先進節(jié)點,器件尺寸的持續(xù)縮小導致可靠性問題日益凸顯。其中,負偏壓溫度不穩(wěn)定性(Negative Bias Temperature Instability, BTI)和熱載流子注入(Hot Carrier Injection, HCI)效應成為影響芯片長期穩(wěn)定性的關鍵因素。傳統(tǒng)基于經(jīng)驗模型的可靠性分析方法已難以滿足先進工藝的精度需求,而基于物理機制的仿真與參數(shù)提取技術成為解決這一難題的核心路徑。本文從BTI/HCI效應的物理機制出發(fā),系統(tǒng)探討先進工藝節(jié)點下的可靠性建模方法,并分析其技術挑戰(zhàn)與未來方向。
隨著芯片設計復雜度的提升,時鐘網(wǎng)絡功耗已成為系統(tǒng)級功耗的重要組成部分。時鐘門控技術通過動態(tài)關閉空閑模塊的時鐘信號,可顯著降低動態(tài)功耗。然而,傳統(tǒng)時鐘門控優(yōu)化方法面臨兩大挑戰(zhàn):一是如何精準識別時鐘信號的可控性,二是如何在RTL級實現(xiàn)高效的邏輯優(yōu)化。英諾達(Innoveda)推出的ERPE(Efficient RTL Power Engine)工具,通過可達性分析與邏輯引擎的深度融合,為RTL級時序時鐘門控優(yōu)化提供了創(chuàng)新解決方案。
隨著芯片設計復雜度的指數(shù)級增長,傳統(tǒng)基于手工編寫的RTL(寄存器傳輸級)代碼開發(fā)模式面臨效率瓶頸。大語言模型(LLM)憑借其強大的自然語言理解與代碼生成能力,為RTL代碼自動化生成提供了全新路徑。本文從需求分析、架構設計、代碼生成到驗證優(yōu)化,系統(tǒng)探討LLM在RTL設計全流程中的應用,并分析其技術挑戰(zhàn)與未來方向。
本項目演示了如何使用Omnimo nRF52840與SparkFun Qwiic OLED顯示器(SSD1306)和AIR QUALITY 4 CLICK傳感器來監(jiān)測室內(nèi)空氣質(zhì)量。該系統(tǒng)在OLED屏幕上實時顯示eCO2(等效二氧化碳)和TVOC(總揮發(fā)性有機化合物)水平。
隨著數(shù)字集成電路(IC)設計復雜度的指數(shù)級增長,傳統(tǒng)布局工具在處理超大規(guī)模設計時面臨計算效率瓶頸。DREAMPlace作為基于深度學習的VLSI布局開源項目,通過引入GPU加速技術,實現(xiàn)了全局布局與詳細布局階段超過30倍的速度提升。本文以DREAMPlace 4.0版本為核心,解析其GPU加速架構設計、性能優(yōu)化策略及工程實踐。
本項目演示了如何將Omnimo nRF52840開發(fā)板與TempHum 23點擊傳感器(SHT4x)和Android應用程序藍水果LE Connect結合使用,以監(jiān)測溫度和濕度水平。通過兩個可訪問的用戶按鈕,用戶可以在不同的測量模式之間切換,并通過低功耗藍牙(BLE)顯示當前模式和環(huán)境數(shù)據(jù)。
在這篇文章中,小編將為大家?guī)砜煽毓璧南嚓P報道。如果你對本文即將要講解的內(nèi)容存在一定興趣,不妨繼續(xù)往下閱讀哦。
今天,小編將在這篇文章中為大家?guī)砜煽毓璧挠嘘P報道,通過閱讀這篇文章,大家可以對它具備清晰的認識,主要內(nèi)容如下。
在這篇文章中,小編將對可控硅的相關內(nèi)容和情況加以介紹以幫助大家增進對它的了解程度,和小編一起來閱讀以下內(nèi)容吧。
一直以來,可控硅都是大家的關注焦點之一。因此針對大家的興趣點所在,小編將為大家?guī)砜煽毓璧南嚓P介紹,詳細內(nèi)容請看下文。