www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當(dāng)前位置:首頁 > 電源 > 電源
[導(dǎo)讀]本文提出了一種基于UC3875的全橋軟開關(guān)直流電源設(shè)計方案,該方案采用移相諧振控制芯片UC3875作為控制核心設(shè)計,開關(guān)頻率為70kHz、輸出功率1.2kW、主電路為移相全橋ZVZCS PWM軟開關(guān)模式的直流開關(guān)電源。并應(yīng)用PSpice軟件進行了仿真,實驗表明以UC3875為核心的控制部分結(jié)構(gòu)簡單可靠,有利于提高電源開關(guān)頻率。

0 引言

PWM是英文“Pulse Width Modulation”的縮寫,簡稱脈寬調(diào)制,是利用微處理器的數(shù)字輸出來對模擬電路進行控制的一種非常有效的技術(shù),廣泛應(yīng)用在從測量、通信到功率控制與變換的許多領(lǐng)域中。

本文介紹了一臺采用移相諧振控制芯片UC3875作為控制核心設(shè)計,開關(guān)頻率為70kHz、輸出功率1.2kW、主電路為移相全橋ZVZCS PWM軟開關(guān)模式的直流開關(guān)電源設(shè)計方案。并應(yīng)用PSpice軟件進行了仿真,實驗結(jié)果與仿真結(jié)果基本符合。

1 系統(tǒng)設(shè)計主電路分析

在設(shè)計制作的1.2kW(480V/2.5A)的軟開關(guān)電源中,其主電路為全橋變換器結(jié)構(gòu),四只開關(guān)管均為MOSFET(1000V/24A),采用移相ZVZCSPWM控制,即超前臂開關(guān)管實現(xiàn)ZVS、滯后臂開關(guān)管實現(xiàn)ZCS,電路結(jié)構(gòu)簡圖如圖1,VT1~VT4是全橋變換器的四只MOSFET開關(guān)管,VD1、VD2分別是超前臂開關(guān)管VT1、VT2的反并超快恢復(fù)二極管,C1、C2分別是為了實現(xiàn)VTl、VT2的ZVS設(shè)置的高頻電容,VD3、VD4是反向電流阻斷二極管,以實現(xiàn)滯后臂VT3、VT4的ZCS,Llk為變壓器漏感,Cb為阻斷電容,T為主變壓器,副邊由VD5~VD8構(gòu)成的高頻整流電路以及Lf、C3、C4等濾波器件組成。

 

 

其基本工作原理如下:

當(dāng)開關(guān)管VT1、VT4或VT2、VT3同時導(dǎo)通時,電路工作情況與全橋變換器的硬開關(guān)工作模式情況一樣,主變壓器原邊向負(fù)載提供能量。通過移相控制,在關(guān)斷VT1時并不馬上關(guān)斷VT4,而是根據(jù)輸出反饋信號決定的移相角,經(jīng)過一定時間后再關(guān)斷VT4,在關(guān)斷VT1之前,由于VT1導(dǎo)通,其并聯(lián)電容C1上電壓等于VT1的導(dǎo)通壓降,理想狀況下其值為零,當(dāng)關(guān)斷VT1時刻,C1開始充電,由于電容電壓不能突變,因此,VT1即是零電壓關(guān)斷。

由于變壓器漏感L1k以及副邊整流濾波電感的作用,VT1關(guān)斷后,原邊電流不能突變,繼續(xù)給Cb充電,同時C2也通過原邊放電,當(dāng)C2電壓降到零后,VD2自然導(dǎo)通,這時開通VT2,則VT2即是零電壓開通。

當(dāng)C1充滿電、C2放電完畢后,由于VD2是導(dǎo)通的,此時加在變壓器原邊繞組和漏感上的電壓為阻斷電容Cb兩端電壓,原邊電流開始減小,但繼續(xù)給Cb充電,直到原邊電流為零,這時由于VD4的阻斷作用,電容Cb不能通過VT2、VT4、VD4進行放電,Cb兩端電壓維持不變,這時流過VT4電流為零,關(guān)斷VT4即是零電流關(guān)斷。

關(guān)斷VT4以后,經(jīng)過預(yù)先設(shè)置的死區(qū)時間后開通VT3,由于電壓器漏感的存在,原邊電流不能突變,因此VT3即是零電流開通。

VT2、VT3同時導(dǎo)通后原邊向負(fù)載提供能量,一定時間后關(guān)斷VT2,由于C2的存在,VT2是零電壓關(guān)斷,如同前面分析,原邊電流這時不能突變,C1經(jīng)過VD3、VT3、Cb放電完畢后,VD1自然導(dǎo)通,此時開通VT1即是零電壓開通,由于VD3的阻斷,原邊電流降為零以后,關(guān)斷VT3,則VT3即是零電流關(guān)斷,經(jīng)過預(yù)選設(shè)置好的死區(qū)時間延遲后開通VT4,由于變壓器漏感及副邊濾波電感的作用,原邊電流不能突變,VT4即是零電流開通。

這種采用超快恢復(fù)二極管阻斷原邊反向電流方式的移相式ZVZCS PWM全橋變換器拓?fù)涞睦硐牍ぷ鞑ㄐ稳鐖D2所示,其中Uab表示主電路圖3中a、b兩點之間的電壓,ip為變壓器T原邊電流,Ucb為阻斷電容Ub上的電壓,Urect是副邊整流后的電壓。

 

 

2 UC3875的主控制回路設(shè)計

為了實現(xiàn)主回路開關(guān)管ZVZCS軟開關(guān),采用UC3875為其設(shè)計了PWM移相控制電路,如圖3所示??紤]到所選MOSFET功率比較大對芯片的四個輸出驅(qū)動信號進行了功率放大,再經(jīng)高頻脈沖變壓器T1、T2隔離最后經(jīng)過驅(qū)動電路驅(qū)動MOSFET開關(guān)管。

 

 

整個控制系統(tǒng)所有供電均用同一個15V直流電源,實驗中設(shè)置開關(guān)頻率為70kHz,死區(qū)時間設(shè)置為1.5μs,采用簡單的電壓控制模式,電源輸出直流電壓通過采樣電路、光電隔離電路后形成控制信號,輸入到UC3875誤差放大器的EA一,控制UC3875誤差放大器的輸出,從而控制芯片四個輸出之間的移相角大小,使電源能夠穩(wěn)定工作,圖中R6、C5接在EA一和E/AOUT之間構(gòu)成PI控制。在本設(shè)計中把CS+端用作故障保護電路,當(dāng)發(fā)生輸出過壓、輸出過流、高頻變原邊過流、開關(guān)管過熱等故障時,通過一定的轉(zhuǎn)換電路,把故障信號轉(zhuǎn)換為高于2.5V的電壓接到CS+端,使UC3875四個輸出驅(qū)動信號全為低電平,對電路實現(xiàn)保護。

圖4是開關(guān)管的驅(qū)動電路。隔離變壓器的設(shè)計采用AP法、變比為l:1.3的三繞組變壓器。UC3875輸出的單極性脈沖經(jīng)過放大電路、隔離電路和驅(qū)動電路后形成+12V/一5V的雙極性驅(qū)動脈沖,保證開關(guān)管的穩(wěn)定開通和關(guān)斷。

 

 

3 仿真與實驗結(jié)果分析

PSpice是一款功能強大的電路分析軟件,對開關(guān)頻率70kHz的ZVZCS軟開關(guān)電源的仿真是在PSpice9.1平臺上進行的。

實驗樣機的主回路結(jié)構(gòu)采用圖1所示的電路拓?fù)洌钄喽O管采用超快恢復(fù)大功率二極管RHRG30120,其反向恢復(fù)時間在100ns以內(nèi),滿足70kHz開關(guān)頻率的要求。開關(guān)管MOSFET采用IXYS公司的IXFK24N100開關(guān)管,這種型號MOS管自身反并有超快恢復(fù)二極管,其反向恢復(fù)時間約250ns.

圖5是超前橋臂開關(guān)管驅(qū)動電壓與管壓降波形圖,(a)為仿真波形、(b)為實驗波形,可見超前臂開關(guān)管完全實現(xiàn)了ZVS開通,VT1、VT2關(guān)斷時是依賴其自身很小的結(jié)電容來實現(xiàn)的,從圖中可以看出,關(guān)斷時也基本實現(xiàn)了ZVS關(guān)斷。[!--empirenews.page--]

 

 

圖6是滯后橋臂開關(guān)管驅(qū)動電壓與電流波形圖,(a)為仿真波形、(b)為實驗波形;

 

 

圖7是滯后臂開關(guān)管管壓降與電流波形圖,(a)為仿真波形、(b)為實驗波形。

 

 

從圖6、圖7可以看出滯后臂開關(guān)管VT3、VT4很好地實現(xiàn)了ZCS關(guān)斷,關(guān)斷時開關(guān)管電流已經(jīng)為零;滯后臂開關(guān)管完全開通之前,開關(guān)管電流也幾乎為零,基本實現(xiàn)了ZCS開通。而且滯后橋臂開關(guān)管VT3、VT4可以在很大負(fù)載范圍內(nèi)實現(xiàn)ZCS開關(guān)。

圖8是兩橋臂中點之間的電壓Uab的波形圖,(a)為仿真波形、(b)為實驗波形。

 

 

圖9是阻斷電容Cb上的電壓U曲波形,(a)為仿真波形、(b)為實驗波形。

 

 

從圖上可以看出,由于有Ucb的存在,Uab不是一個方波。當(dāng)Uab=0時,阻斷電容Cb上的電壓Ucb使原邊電流ip逐漸減小到零,由于阻斷二極管的阻斷作用,ip不能反向流動,從而實現(xiàn)了滯后橋臂的ZCS開關(guān)。

4 結(jié)論

本文提出了一種基于UC3875的全橋軟開關(guān)直流電源設(shè)計方案,該方案采用移相諧振控制芯片UC3875作為控制核心設(shè)計,開關(guān)頻率為70kHz、輸出功率1.2kW、主電路為移相全橋ZVZCS PWM軟開關(guān)模式的直流開關(guān)電源。并應(yīng)用PSpice軟件進行了仿真,實驗表明以UC3875為核心的控制部分結(jié)構(gòu)簡單可靠,電源主電路開關(guān)管均實現(xiàn)了軟開關(guān),并克服了單純的ZVS或ZCS軟開關(guān)模式的缺點,可有效減小開關(guān)管開關(guān)過程引起的損耗,有利于提高電源開關(guān)頻率,減小電源體積和重量。

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動電源

在工業(yè)自動化蓬勃發(fā)展的當(dāng)下,工業(yè)電機作為核心動力設(shè)備,其驅(qū)動電源的性能直接關(guān)系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅(qū)動電源設(shè)計中至關(guān)重要的兩個環(huán)節(jié),集成化方案的設(shè)計成為提升電機驅(qū)動性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機 驅(qū)動電源

LED 驅(qū)動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設(shè)備的使用壽命。然而,在實際應(yīng)用中,LED 驅(qū)動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設(shè)計、生...

關(guān)鍵字: 驅(qū)動電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動電源的公式,電感內(nèi)電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計 驅(qū)動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動汽車的核心技術(shù)之一是電機驅(qū)動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅(qū)動系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動汽車的動力性能和...

關(guān)鍵字: 電動汽車 新能源 驅(qū)動電源

在現(xiàn)代城市建設(shè)中,街道及停車場照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動電源 LED

LED通用照明設(shè)計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現(xiàn)在的LED驅(qū)動電源

關(guān)鍵字: LED 驅(qū)動電源 開關(guān)電源

LED驅(qū)動電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動電源
關(guān)閉