www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當(dāng)前位置:首頁 > 嵌入式 > 嵌入式硬件
[導(dǎo)讀]這是一個(gè)手把手教你學(xué)習(xí)深度學(xué)校的教程。一步一步,我們將要嘗試去解決Kaggle challenge中的臉部關(guān)鍵點(diǎn)的檢測問題。這份教程介紹了Lasagne,一個(gè)比較新的基于Python和Thean

這是一個(gè)手把手教你學(xué)習(xí)深度學(xué)校的教程。一步一步,我們將要嘗試去解決Kaggle challenge中的臉部關(guān)鍵點(diǎn)的檢測問題。

這份教程介紹了Lasagne,一個(gè)比較新的基于Python和Theano的神經(jīng)網(wǎng)絡(luò)庫。我們將用Lasagne去模擬一系列的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),討論一下數(shù)據(jù)增強(qiáng)(data augmentaTIon)、流失(dropout)、結(jié)合動量(momentum)和預(yù)先訓(xùn)練(pre-training)。這里有很多方法可以將我們的結(jié)果改善不少。

我假設(shè)諸位已經(jīng)知道了一些關(guān)于神經(jīng)網(wǎng)絡(luò)的只是。所以我們就不介紹神經(jīng)網(wǎng)絡(luò)的背景知識了。這里也提供一些好的介紹神經(jīng)網(wǎng)絡(luò)的書籍和視頻,如Neural Networks and Deep Learning online book。Alec Radford的演講Deep Learning with Python’s Theano library也是一個(gè)快速介紹的好例子。以及ConvNetJS Browser Demos

預(yù)先準(zhǔn)備

如果你只需要看懂的話,則不需要自己寫一個(gè)代碼然后去執(zhí)行。這里提供一些安裝的教程給那些配置好CUDA的GPU并且想要運(yùn)行試驗(yàn)的那些人。

我假設(shè)你們已經(jīng)安裝了CUDA toolkit, Python 2.7.x, numpy, pandas, matplotlib, 和scikit-learn。安裝剩下的依賴包,比如Lasagne和Theano都可以運(yùn)行下面的指令

pip install -r https://raw.githubusercontent.com/dnouri/kfkd-tutorial/master/requiremen...

注意,為了簡潔起見,我沒有在命令中創(chuàng)建虛擬環(huán)境,但是你需要的。

譯者:我是在windows10上面配置這個(gè)環(huán)境的,安裝anaconda(再用此環(huán)境安裝依賴包)、VS2013(不推薦2015)、CUDA工具即可。

如果一切都順利的話,你將會在你的虛擬環(huán)境下的src/lasagne/examples/目錄中找到mnist.py并運(yùn)行MNIST例子。這是一個(gè)對于神經(jīng)網(wǎng)絡(luò)的“Hello world”程序。數(shù)據(jù)中有十個(gè)分類,分別是0~9的數(shù)字,輸入時(shí)28&TImes;28的手寫數(shù)字圖片。

cd src/lasagne/examples/

python mnist.py

此命令將在三十秒左右后開始打印輸出。 這需要一段時(shí)間的原因是,Lasagne使用Theano做重型起重; Theano反過來是一個(gè)“優(yōu)化GPU元編程代碼生成面向數(shù)組的優(yōu)化Python數(shù)學(xué)編譯器”,它將生成需要在訓(xùn)練發(fā)生前編譯的C代碼。 幸運(yùn)的是,我們組需要在第一次運(yùn)行時(shí)支付這個(gè)開銷的價(jià)格。

譯者:如果沒有配置GPU,用的是CPU的話,應(yīng)該是不用這么久的編譯時(shí)間,但是執(zhí)行時(shí)間有一些長。如果用GPU,在第一次跑一些程序的時(shí)候,會有提示正在編譯的內(nèi)容。

當(dāng)訓(xùn)練開始的時(shí)候,你會看到

Epoch 1 of 500

training loss: 1.352731

validaTIon loss: 0.466565

validaTIon accuracy: 87.70 %

Epoch 2 of 500

training loss: 0.591704

validation loss: 0.326680

validation accuracy: 90.64 %

Epoch 3 of 500

training loss: 0.464022

validation loss: 0.275699

validation accuracy: 91.98 %

如果你讓訓(xùn)練運(yùn)行足夠長,你會注意到,在大約75代之后,它將達(dá)到大約98%的測試精度。

如果你用的是GPU,你想要讓Theano去使用它,你要在用戶的主文件夾下面創(chuàng)建一個(gè).theanorc文件。你需要根據(jù)自己安裝環(huán)境以及自己操作系統(tǒng)的配置使用不同的配置信息:

[global]

floatX = float32

device = gpu0

[lib]

cnmem = 1

譯者:這是我的配置文件。

[cuba]

root = C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0

[global]

openmp = False

device = gpu

floatX = float32

allow_input_downcast = True

[nvcc]

fastmath = True

flags = -IC:\Anaconda2\libs

compiler_bindir = C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\bin

base_compiledir = path_to_a_directory_without_such_characters

[blas]

ldflags =

[gcc]

cxxflags = -IC:\Anaconda2\MinGW

數(shù)據(jù)

面部關(guān)鍵點(diǎn)檢測的訓(xùn)練數(shù)據(jù)集包括7049(96x96)個(gè)灰度圖像。 對于每個(gè)圖像,我們應(yīng)該學(xué)習(xí)找到15個(gè)關(guān)鍵點(diǎn)的正確位置(x和y坐標(biāo)),例如

left_eye_center

right_eye_outer_corner

mouth_center_bottom_lip

一個(gè)臉部標(biāo)記出三個(gè)關(guān)鍵點(diǎn)的例子。

數(shù)據(jù)集的一個(gè)有趣的變化是,對于一些關(guān)鍵點(diǎn),我們只有大約2,000個(gè)標(biāo)簽,而其他關(guān)鍵點(diǎn)有7,000多個(gè)標(biāo)簽可用于訓(xùn)練。

讓我們編寫一些Python代碼,從所提供的CSV文件加載數(shù)據(jù)。 我們將編寫一個(gè)可以加載訓(xùn)練和測試數(shù)據(jù)的函數(shù)。 這兩個(gè)數(shù)據(jù)集的區(qū)別在于測試數(shù)據(jù)不包含目標(biāo)值; 這是預(yù)測這些問題的目標(biāo)。 這里是我們的load()函數(shù):

# file kfkd.py

import os

import numpy as np

from pandas.io.parsers import read_csv

from sklearn.utils import shuffle

FTRAIN = '~/data/kaggle-facial-keypoint-detection/training.csv'

FTEST = '~/data/kaggle-facial-keypoint-detection/test.csv'

def load(test=False, cols=None):

"""Loads data from FTEST if *test* is True, otherwise from FTRAIN.

Pass a list of *cols* if you're only interested in a subset of the

target columns.

"""

fname = FTEST if test else FTRAIN

df = read_csv(os.path.expanduser(fname)) # load pandas dataframe

# The Image column has pixel values separated by space; convert

# the values to numpy arrays:

df['Image'] = df['Image'].apply(lambda im: np.fromstring(im, sep=' '))

if cols: # get a subset of columns

df = df[list(cols) + ['Image']]

print(df.count()) # prints the number of values for each column

df = df.dropna() # drop all rows that have missing values in them[!--empirenews.page--]

X = np.vstack(df['Image'].values) / 255. # scale pixel values to [0, 1]

X = X.astype(np.float32)

if not test: # only FTRAIN has any target columns

y = df[df.columns[:-1]].values

y = (y - 48) / 48 # scale target coordinates to [-1, 1]

X, y = shuffle(X, y, random_state=42) # shuffle train data

y = y.astype(np.float32)

else:

y = None

return X, y

X, y = load()

print("X.shape == {}; X.min == {:.3f}; X.max == {:.3f}".format(

X.shape, X.min(), X.max()))

print("y.shape == {}; y.min == {:.3f}; y.max == {:.3f}".format(

y.shape, y.min(), y.max()))

你沒有必要看懂這個(gè)函數(shù)的每一個(gè)細(xì)節(jié)。 但讓我們看看上面的腳本輸出:

$ python kfkd.py

left_eye_center_x 7034

left_eye_center_y 7034

right_eye_center_x 7032

right_eye_center_y 7032

left_eye_inner_corner_x 2266

left_eye_inner_corner_y 2266

left_eye_outer_corner_x 2263

left_eye_outer_corner_y 2263

right_eye_inner_corner_x 2264

right_eye_inner_corner_y 2264

mouth_right_corner_x 2267

mouth_right_corner_y 2267

mouth_center_top_lip_x 2272

mouth_center_top_lip_y 2272

mouth_center_bottom_lip_x 7014

mouth_center_bottom_lip_y 7014

Image 7044

dtype: int64

X.shape == (2140, 9216); X.min == 0.000; X.max == 1.000

y.shape == (2140, 30); y.min == -0.920; y.max == 0.996

首先,它打印出了CSV文件中所有列的列表以及每個(gè)列的可用值的數(shù)量。 因此,雖然我們有一個(gè)圖像的訓(xùn)練數(shù)據(jù)中的所有行,我們對于mouth_right_corner_x只有個(gè)2,267的值等等。

load()返回一個(gè)元組(X,y),其中y是目標(biāo)矩陣。 y的形狀是n×m的,其中n是具有所有m個(gè)關(guān)鍵點(diǎn)的數(shù)據(jù)集中的樣本數(shù)。 刪除具有缺失值的所有行是這行代碼的功能:

df = df.dropna() # drop all rows that have missing values in them

這個(gè)腳本輸出的y.shape == (2140, 30)告訴我們,在數(shù)據(jù)集中只有2140個(gè)圖像有著所有30個(gè)目標(biāo)值。

一開始,我們將僅訓(xùn)練這2140個(gè)樣本。 這使得我們比樣本具有更多的輸入大小(9,216); 過度擬合可能成為一個(gè)問題。當(dāng)然,拋棄70%的訓(xùn)練數(shù)據(jù)也是一個(gè)壞主意。但是目前就這樣,我們將在后面談?wù)摗?/p>

第一個(gè)模型:一個(gè)單隱層

現(xiàn)在我們已經(jīng)完成了加載數(shù)據(jù)的工作,讓我們使用Lasagne并創(chuàng)建一個(gè)帶有一個(gè)隱藏層的神經(jīng)網(wǎng)絡(luò)。 我們將從代碼開始:

# add to kfkd.py

from lasagne import layers

from lasagne.updates import nesterov_momentum

from nolearn.lasagne import NeuralNet

net1 = NeuralNet(

layers=[ # three layers: one hidden layer

('input', layers.InputLayer),

('hidden', layers.DenseLayer),

('output', layers.DenseLayer),

],

# layer parameters:

input_shape=(None, 9216), # 96x96 input pixels per batch

hidden_num_units=100, # number of units in hidden layer

output_nonlinearity=None, # output layer uses identity function

output_num_units=30, # 30 target values

# optimization method:

update=nesterov_momentum,

update_learning_rate=0.01,

update_momentum=0.9,

regression=True, # flag to indicate we're dealing with regression problem

max_epochs=400, # we want to train this many epochs

verbose=1,

)

X, y = load()

net1.fit(X, y)

我們使用相當(dāng)多的參數(shù)來初始化NeuralNet。讓我們看看他們。首先是三層及其參數(shù):

layers=[ # 三層神經(jīng)網(wǎng)絡(luò):一個(gè)隱層

('input', layers.InputLayer),

('hidden', layers.DenseLayer),

('output', layers.DenseLayer),

],

# 層的參數(shù):

input_shape=(None, 9216), # 每個(gè)批次96x96個(gè)輸入樣例

hidden_num_units=100, # 隱層中的單元數(shù)

output_nonlinearity=None, # 輸出用的激活函數(shù)

output_num_units=30, # 30個(gè)目標(biāo)值

這里我們定義輸入層,隱藏層和輸出層。在層參數(shù)中,我們命名并指定每個(gè)層的類型及其順序。參數(shù)input_shape,hidden_??num_units,output_nonlinearity和output_num_units是特定層的參數(shù)。它們通過它們的前綴引用層,使得input_shape定義輸入層的shape參數(shù),hidden_??num_units定義隱藏層的num_units等等。(看起來有點(diǎn)奇怪,我們必須指定像這樣的參數(shù),但結(jié)果是它讓我們對于受使用scikit-learn的管道和參數(shù)搜索功能擁有更好的兼容性。)

我們將input_shape的第一個(gè)維度設(shè)置為None。這轉(zhuǎn)換為可變批量大小。如果你知道批量大小的話,也可以設(shè)置成固定值,如果為None,則是可變值。

我們將output_nonlinearity設(shè)置為None。因此,輸出單元的激活僅僅是隱藏層中的激活的線性組合。

DenseLayer使用的默認(rèn)非線性是rectifier,它其實(shí)就是返回max(0, x)。它是當(dāng)今最受歡迎的激活功能選擇。通過不明確設(shè)置hidden_??nonlinearity,我們選擇rectifier作為我們隱藏層的激活函數(shù)。

神經(jīng)網(wǎng)絡(luò)的權(quán)重用具有巧妙選擇的間隔的均勻分布來初始化。也就是說,Lasagne使用“Glorot-style”初始化來計(jì)算出這個(gè)間隔。

還有幾個(gè)參數(shù)。 所有以update開頭的參數(shù)用來表示更新方程(或最優(yōu)化方法)的參數(shù)。 更新方程將在每個(gè)批次后更新我們網(wǎng)絡(luò)的權(quán)重。 我們將使用涅斯捷羅夫動量梯度下降優(yōu)化方法(nesterov_momentum gradient descent optimization method)來完成這項(xiàng)工作。Lasagne實(shí)現(xiàn)的其他方法有很多,如adagrad和rmsprop。我們選擇nesterov_momentum,因?yàn)樗呀?jīng)證明對于大量的問題很好地工作。[!--empirenews.page--]

”’ optimization method: ””

update=nesterov_momentum,

update_learning_rate=0.01,

update_momentum=0.9,

update_learning_rate定義了梯度下降更新權(quán)重的步長。我們稍后討論學(xué)習(xí)率和momentum參數(shù),現(xiàn)在的話,這種健全的默認(rèn)值已經(jīng)足夠了。

上圖是不同的最優(yōu)化方法的對比(animation by?Alec Radford)。星標(biāo)位置為全局最優(yōu)值。注意到不添加動量的隨機(jī)梯度下降是收斂最慢的,我們在教程中從頭到尾都是用Nesterov加速過的梯度下降。

在我們的NeuralNet的定義中,我們沒有指定一個(gè)目標(biāo)函數(shù)來實(shí)現(xiàn)最小化。這里使用的還有一個(gè)默認(rèn)值:對于回歸問題,它是均方誤差(MSE)。

最后一組參數(shù)聲明我們正在處理一個(gè)回歸問題(而不是分類),400是我們愿意訓(xùn)練的時(shí)期數(shù),并且我們想在訓(xùn)練期間通過設(shè)置verbose = 1:

regression=True, # flag to indicate we're dealing with regression problem

max_epochs=400, # we want to train this many epochs

verbose=1,

最后兩行加載了數(shù)據(jù),然后用數(shù)據(jù)訓(xùn)練了我們的第一個(gè)神經(jīng)網(wǎng)絡(luò)。

X, y = load()

net1.fit(X, y)

運(yùn)行這兩行會輸出一個(gè)表格,每次完成一代就輸出一行。每一行里,我們可以看到當(dāng)前的訓(xùn)練損失和驗(yàn)證損失(最小二乘損失),以及兩者的比率。NeuroNet將會自動把輸入數(shù)據(jù)X分成訓(xùn)練集和測試集,用20%的數(shù)據(jù)作驗(yàn)證。(比率可以通過參數(shù)eval_size=0.2調(diào)整)

$ python kfkd.py

...

InputLayer (None, 9216) produces 9216 outputs

DenseLayer (None, 100) produces 100 outputs

DenseLayer (None, 30) produces 30 outputs

Epoch | Train loss | Valid loss | Train / Val

--------|--------------|--------------|----------------

1 | 0.105418 | 0.031085 | 3.391261

2 | 0.020353 | 0.019294 | 1.054894

3 | 0.016118 | 0.016918 | 0.952734

4 | 0.014187 | 0.015550 | 0.912363

5 | 0.013329 | 0.014791 | 0.901199

...

200 | 0.003250 | 0.004150 | 0.783282

201 | 0.003242 | 0.004141 | 0.782850

202 | 0.003234 | 0.004133 | 0.782305

203 | 0.003225 | 0.004126 | 0.781746

204 | 0.003217 | 0.004118 | 0.781239

205 | 0.003209 | 0.004110 | 0.780738

...

395 | 0.002259 | 0.003269 | 0.690925

396 | 0.002256 | 0.003264 | 0.691164

397 | 0.002254 | 0.003264 | 0.690485

398 | 0.002249 | 0.003259 | 0.690303

399 | 0.002247 | 0.003260 | 0.689252

400 | 0.002244 | 0.003255 | 0.689606

在相對較快的GPU上訓(xùn)練,我們能夠在1分鐘之內(nèi)完成400個(gè)epoch的訓(xùn)練。注意測試損失會一直減小。(如果你訓(xùn)練得足夠長時(shí)間,它將會有很小很小的改進(jìn))

現(xiàn)在我們有了一個(gè)很好的結(jié)果了么?我們看到測試誤差是0.0032,和競賽基準(zhǔn)比試一下。記住我們將目標(biāo)除以了48以將其縮放到-1到1之間,也就是說,要是想計(jì)算均方誤差和排行榜的結(jié)果比較,必須把我們上面得到的0.003255還原到原來的尺度。

>>> import numpy as np

>>> np.sqrt(0.003255) * 48

2.7385251505144153

這個(gè)值應(yīng)該可以代表我們的成績了。當(dāng)然,這得假設(shè)測試集合的數(shù)據(jù)和訓(xùn)練集合的數(shù)據(jù)符合相同的分布,但事實(shí)卻并非如此。

測試網(wǎng)絡(luò)

我們剛剛訓(xùn)練的net1對象已經(jīng)保存了訓(xùn)練時(shí)打印在控制臺桌面中的記錄,我們可以獲取這個(gè)記錄通過train_history_相關(guān)屬性,讓我們畫出這兩個(gè)曲線。

train_loss = np.array([i["train_loss"] for i in net1.train_history_])

valid_loss = np.array([i["valid_loss"] for i in net1.train_history_])

pyplot.plot(train_loss, linewidth=3, label="train")

pyplot.plot(valid_loss, linewidth=3, label="valid")

pyplot.grid()

pyplot.legend()

pyplot.xlabel("epoch")

pyplot.ylabel("loss")

pyplot.ylim(1e-3, 1e-2)

pyplot.yscale("log")

pyplot.show()

我們能夠看到我們的網(wǎng)絡(luò)過擬合了,但是結(jié)果還不錯(cuò)。事實(shí)上,我們找不到驗(yàn)證錯(cuò)誤開始上升的點(diǎn),所以那種通常用來避免過擬合的early stopping方法在現(xiàn)在還沒有什么用處。注意我們沒有采用任何正則化手段,除了選擇節(jié)點(diǎn)比較少的隱層——這可以讓過擬合保持在可控范圍內(nèi)。

那么網(wǎng)絡(luò)的預(yù)測結(jié)果是什么樣的呢?讓我們選擇一些樣例來看一看。

def plot_sample(x, y, axis):

img = x.reshape(96, 96)

axis.imshow(img, cmap='gray')

axis.scatter(y[0::2] * 48 + 48, y[1::2] * 48 + 48, marker='x', s=10)

X, _ = load(test=True)

y_pred = net1.predict(X)

fig = pyplot.figure(figsize=(6, 6))

fig.subplots_adjust(

left=0, right=1, bottom=0, top=1, hspace=0.05, wspace=0.05)

for i in range(16):

ax = fig.add_subplot(4, 4, i + 1, xticks=[], yticks=[])

plot_sample(X[i], y_pred[i], ax)

pyplot.show()

第一個(gè)模型預(yù)測的結(jié)果(從測試集抽出了16個(gè)樣例)

預(yù)測結(jié)果看起來還不錯(cuò),但是有點(diǎn)時(shí)候還是有一點(diǎn)偏。讓我們試著做的更好一些。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動電源

在工業(yè)自動化蓬勃發(fā)展的當(dāng)下,工業(yè)電機(jī)作為核心動力設(shè)備,其驅(qū)動電源的性能直接關(guān)系到整個(gè)系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護(hù)是驅(qū)動電源設(shè)計(jì)中至關(guān)重要的兩個(gè)環(huán)節(jié),集成化方案的設(shè)計(jì)成為提升電機(jī)驅(qū)動性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機(jī) 驅(qū)動電源

LED 驅(qū)動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個(gè)照明設(shè)備的使用壽命。然而,在實(shí)際應(yīng)用中,LED 驅(qū)動電源易損壞的問題卻十分常見,不僅增加了維護(hù)成本,還影響了用戶體驗(yàn)。要解決這一問題,需從設(shè)計(jì)、生...

關(guān)鍵字: 驅(qū)動電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動電源的公式,電感內(nèi)電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計(jì) 驅(qū)動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動汽車的核心技術(shù)之一是電機(jī)驅(qū)動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機(jī)驅(qū)動系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動汽車的動力性能和...

關(guān)鍵字: 電動汽車 新能源 驅(qū)動電源

在現(xiàn)代城市建設(shè)中,街道及停車場照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進(jìn)步,高亮度白光發(fā)光二極管(LED)因其獨(dú)特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動電源 LED

LED通用照明設(shè)計(jì)工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動電源的電磁干擾(EMI)問題成為了一個(gè)不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機(jī)重量也有所下降,所以,現(xiàn)在的LED驅(qū)動電源

關(guān)鍵字: LED 驅(qū)動電源 開關(guān)電源

LED驅(qū)動電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動電源
關(guān)閉