www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當前位置:首頁 > 嵌入式 > 嵌入式軟件
[導讀]相位式光纖測量電路系統(tǒng)的設(shè)計與實現(xiàn)

引言
    光電測距儀和全站型電子速測儀(以下簡稱全站儀)作為一種在多領(lǐng)域廣泛應用的計量儀器,為保證精度和可靠性,必須對誤差進行定期檢定和校正。目前這種檢定多在室外標準基線上采用多段基線組合比較法進行。但這種方法成本大,維護困難,且易受環(huán)境因素的影響,因而國內(nèi)外一直致力于建立室內(nèi)檢定裝置,以取代室外基線,完成測距儀的檢定和校正。
    光纖作為一種光傳輸介質(zhì),以其良好的導光性和伸展性,成為激光測距室內(nèi)校正的理想選擇,已有文獻對其可行性進行了分析?;诖耍覀冄兄崎_發(fā)了基于光纖的激光測距校正系統(tǒng)。在該校正系統(tǒng)中,利用光纖模擬室外基線,使用全站儀對光纖光程進行測量,其測量結(jié)果和光纖實際光程進行比較,從而達到檢定和校正的目的。
    為了得到被測光纖基線的實際光程,需要對光纖的光程長度進行精確測量。現(xiàn)有的光纖長度測量方法有光時域反射(OTDR)、光頻域反射(OFDR)、干涉法、脈沖法,相位法等。其中相位法測量范圍較大、精度高,能夠很好地滿足光纖基線的測量要求。因而,我們利用FPGA、直接數(shù)字合成(DDS)、數(shù)字鑒相等技術(shù),設(shè)計和實現(xiàn)了基于相位法的電路測量系統(tǒng),用于光纖光程的測量。該測量系統(tǒng)具有比全站儀更高的測量精度,從而對光纖基線的實際光程進行標定,以其標定長度與全站儀測量結(jié)果進行比較,完成全站儀的校正。

1 相位法測量的基本原理
   
相位法激光測量技術(shù)利用光調(diào)制信號在發(fā)射端和接收端之間的相位差來實現(xiàn)對被測目標距離量或長度量的測量。
利用相位法測量光纖光程如圖1所示,一段光程為的光纖,其輸入輸出端分別為A、B,在A端輸入經(jīng)調(diào)制的光信號,在光纖中傳輸后在B點輸出。設(shè)調(diào)制信號在A的相位為φ0,在B點的相位為φ1,那么通過檢測兩端之間的相位差△φ=φ1-φ0,可得到L值。


    設(shè)光調(diào)制信號的頻率為f,光速為v,則信號波長λ=v/f,那么。
    調(diào)制信號可認為是相位法測量的度量標尺,稱之為“測尺”。測尺頻率越大,測量精度越高。由于測尺信號的周期重復性,使用一把測尺不能實現(xiàn)長度的準確測量。因而使用一組(兩個或以上)測尺一起對三進行測量,可同時保證測量的精度和范圍,得到準確測量值。

2 相位法測量的電路實現(xiàn)
2.1 電路實現(xiàn)方案
   
利用相位法對光纖光程進行測量的電路框圖如圖2所示。


    在該系統(tǒng)中,上位機PC接收用戶的測量指令,通過USB接口發(fā)送到下位系統(tǒng)的FPGA中,F(xiàn)PGA對指令進行解析,控制頻率信號產(chǎn)生電路產(chǎn)生主振信號和本振信號。
    主振信號通過調(diào)制器對光源發(fā)出的光進行調(diào)制,調(diào)制光在被測光纖中傳輸后由光電轉(zhuǎn)換器得到測量信號。原主振信號作為參考信號與測量信號分別和本振信號進行混頻,然后經(jīng)信號整形后送入FPGA進行鑒相得到兩者相位差,該相位差包含了被測光纖的長度信息。FPGA通過相位差計算得到光纖光程,然后通過USB接口發(fā)送到上位機PC,顯示給用戶。實際測量中,按照以上流程,依次產(chǎn)生兩組不同頻率的測量信號,實現(xiàn)對光纖光程的準確測量。
2.2 系統(tǒng)關(guān)鍵技術(shù)的實現(xiàn)
2.2.1 FPGA單元的實現(xiàn)
    FPGA單元使用Altcra DE2開發(fā)板實現(xiàn),構(gòu)建SOPC系統(tǒng),調(diào)用開發(fā)板中USB組件實現(xiàn)與上位機的數(shù)據(jù)交互,利用NIOS II處理器進行信息處理、指令解析和測量計算。
    同時使用Verilog HDL語言編寫頻率信號控制模塊和鑒相模塊。前者用于對頻率信號產(chǎn)生電路進行控制,后者對測量后的信號進行相位差檢測。其實現(xiàn)框圖如圖3所示。[!--empirenews.page--]


2.2.2 頻率信號產(chǎn)生電路的實現(xiàn)
   
頻率信號產(chǎn)生電路在FPGA中頻率控制模塊的控制下,產(chǎn)生高精度正弦主振信號和本振信號,分別用于光調(diào)制和混頻。此電路產(chǎn)生的信號要求頻率可調(diào),且具有高的頻率穩(wěn)定性和低的相位噪聲,相位抖動小,以保證最終的測量精度。
    在本系統(tǒng)中,我們基于直接數(shù)字頻率合成(DDS)技術(shù)進行信號產(chǎn)生。DDS的實現(xiàn),使用芯片AD9951。AD9951是一個可控的頻率合成芯片,具有32位頻率轉(zhuǎn)換字,最大合成頻率為160MHz。系統(tǒng)中采用兩塊AD9951,分別產(chǎn)生主振信號和本振信號。FPGA通過該芯片的控制端口,對
其產(chǎn)生的信號頻率進行控制。其控制時序如圖4所示。


    AD9951產(chǎn)生的頻率信號具有一定的雜散,系統(tǒng)中使用七階橢圓低通濾波器進行濾波,然后使用運算放大器AD8007進行信號放大。電路框圖如圖5所示。該電路產(chǎn)生的50MHz的正弦信號如圖6所示。

     


2.2.3 混頻鑒相電路
   
由于測量信號頻率較高,直接對其進行鑒相難以達到良好的鑒相精度,因而在系統(tǒng)中采用混頻的方法進行差頻鑒相。在差頻鑒相中,參考信號和測量信號同時與本振信號進行混頻,濾除混頻后高頻分量,得到混頻后低頻參考信號和混頻后低頻測量信號?;祛l降低了信號頻率,但保持相位差不變,便于鑒相操作。相位差的檢測使用自動數(shù)字鑒相法。其原理如圖7所示。參考信號和測量信號通過過零比較,得到參考方波信號和測量方波信號。比較兩方波信號,得到兩者之間的相位差信號,然后使用高頻計數(shù)脈沖對相位差信號,然后使用高頻計數(shù)脈沖對相位差信號進行計數(shù)。設(shè)參考信號和測量信號的周期為f,高頻計數(shù)脈沖的頻率為fc,一個周期內(nèi)的計數(shù)值為M,則相位差為:△φ=2πMf /fc。為了減小偶然誤差,提高鑒相精度,可以對多個周期計數(shù)求平均。設(shè)N個周期的計數(shù)值為M‘,則△φ=2πM‘f/Nfc。

[!--empirenews.page--]


    混頻電路的實現(xiàn)基于混頻器AD831。使用兩片AD831,分別用于參考信號與本振信號混頻及測量信號與本振信號混頻?;祛l后使用芯片MAX274進行帶通濾波,得到混頻后的低頻正弦信號。然后通過基于MAX912的過零比較電路將正弦信號轉(zhuǎn)換為同相位差的方波信號,輸入到FPGA中進行鑒相。在FPGA中,利用多周期自動數(shù)字鑒相法,對相位差進行檢測。其實現(xiàn)框圖如圖8所示。



3 測量結(jié)果
   
在實際測量中,利用組合測尺頻率先后進行兩次測量。第一次取主振信號頻率為52MHz,本振信號頻率為51.99MHz;第二次取主振信號頻率為51MHz,本振信號頻率為50.99MHz。對應于混頻后信號頻率為10kHz。FPGA中鑒相高速計數(shù)脈沖頻率為50MHz?;谝陨蠀?shù),對多段光纖進行測量。兩次測量的結(jié)果進行分析比較,可得到測量值。被測光纖的實際光程已由精密反射儀通過光學方法進行標定。測量結(jié)果如表1所示。


    由以上測量結(jié)果可以看到,在一定的量程范圍內(nèi),基于相位法的測量系統(tǒng),對光纖光程的測量誤差絕對值小于2mm。

4 結(jié)論
    本文在FPGA、直接數(shù)字頻率合成(DDS)、自動數(shù)字鑒相等技術(shù)的基礎(chǔ)上,設(shè)計并實現(xiàn)了基于相位法的電路測量系統(tǒng)。實際測量結(jié)果表明,此測量系統(tǒng)在一定的量程范圍內(nèi),對光纖光程的測量誤差絕對值小于2mm。在此測量水平下,此測量系統(tǒng)可用于基于光纖的激光測距校正與檢定中,對其中的光纖基線進行測量和標定,這為光電測距儀和全站儀的室內(nèi)檢定提供了一個可行的方案和參考。
    本文所論述的相位法測量的電路實現(xiàn)是一個初步方案,在電路設(shè)計、系統(tǒng)優(yōu)化和誤差分析等方面還需要做進一步的改進,以提高系統(tǒng)性能。

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。

光通信利用光的傳輸特性,將信息轉(zhuǎn)換為光信號,通過光纖進行傳輸,接收端再將光信號轉(zhuǎn)換為電信號進行解碼。光通信廣泛應用于電信、互聯(lián)網(wǎng)、數(shù)據(jù)中心、醫(yī)療、廣電等領(lǐng)域,為人們的生活和工作帶來了更多的方便。

關(guān)鍵字: 光纖 通信技術(shù)

2025年7月31日 – 提供超豐富半導體和電子元器件?的業(yè)界知名新品引入 (NPI) 代理商貿(mào)澤電子 (Mouser Electronics) 即日起開售Molex的Quasar OptiX現(xiàn)場安裝連接器。此系列現(xiàn)場安...

關(guān)鍵字: 連接器 光纖 半導體

伊利諾伊州萊爾市 – 2025年4月2日 – 全球電子行業(yè)領(lǐng)導者及連接技術(shù)創(chuàng)新者Molex莫仕,今日推出VersaBeam擴束光纖(EBO)連接方案。此方案專為超大規(guī)模數(shù)據(jù)中心、云計算與邊緣計算環(huán)境而優(yōu)化,是高密度光纖連...

關(guān)鍵字: 數(shù)據(jù)中心 連接器 光纖

電力、供水、高速網(wǎng)絡三重保障,提升數(shù)據(jù)中心樞紐吸引力 馬來西亞吉隆坡2025年3月16日 /美通社/ -- Mah Sing DC Hub@Southville City將...

關(guān)鍵字: 光纖 數(shù)據(jù)中心 VI DC

雖然光纖本身故障率較低,但如果光纜出現(xiàn)頻繁故障,可能是由于環(huán)境、物理損傷、設(shè)備問題、安裝問題以及其他原因?qū)е碌?。因此,在使用過程中,需要注意各種規(guī)定,加強光纜的管理和維護,從而避免光纜的頻繁故障。

關(guān)鍵字: 光纖 網(wǎng)絡

是德科技(Keysight Technologies, Inc.)與無晶圓廠半導體公司 KD 達成合作,雙方將共同開發(fā)針對多千兆位光纖車載以太網(wǎng)物理層的完整測試方案。是德科技與KD聯(lián)合開發(fā)的發(fā)射機失真度(TDFOM)測量...

關(guān)鍵字: 以太網(wǎng) 物理層 光纖

在當今的工業(yè)自動化、智能檢測以及安防監(jiān)控等眾多領(lǐng)域,傳感器技術(shù)發(fā)揮著關(guān)鍵作用,而光纖對射傳感器憑借其獨特的優(yōu)勢脫穎而出,成為眾多應用場景中的得力助手,為各行業(yè)的高效、精準運行提供了有力支持。

關(guān)鍵字: 傳感器 光纖 高精度

在電子電路設(shè)計領(lǐng)域,濾波器的設(shè)計是一項至關(guān)重要的任務,它能夠有效地去除信號中的噪聲和不需要的頻率成分,確保電路系統(tǒng)的穩(wěn)定運行和信號的高質(zhì)量傳輸。而濾波器的設(shè)計涉及到多個關(guān)鍵元件的選型以及它們的連接順序,包括電感、電容、電...

關(guān)鍵字: 濾波器 噪聲 電路系統(tǒng)

為進一步促進光纖和5G網(wǎng)絡的發(fā)展,歐盟委員會計劃在未來三年內(nèi)向這兩個領(lǐng)域投資8.65億歐元,并開始征集有關(guān)如何高效使用這筆資金的建議。

關(guān)鍵字: 5G 光纖 千兆網(wǎng)絡
關(guān)閉