www.久久久久|狼友网站av天堂|精品国产无码a片|一级av色欲av|91在线播放视频|亚洲无码主播在线|国产精品草久在线|明星AV网站在线|污污内射久久一区|婷婷综合视频网站

當(dāng)前位置:首頁 > 物聯(lián)網(wǎng) > 智能應(yīng)用
[導(dǎo)讀]在下述的內(nèi)容中,小編將會對機器學(xué)習(xí)算法的相關(guān)消息予以報道,如果機器學(xué)習(xí)算法是您想要了解的焦點之一,不妨和小編共同閱讀這篇文章哦。

在下述的內(nèi)容中,小編將會對機器學(xué)習(xí)算法的相關(guān)消息予以報道,如果機器學(xué)習(xí)算法是您想要了解的焦點之一,不妨和小編共同閱讀這篇文章哦。

1.人工神經(jīng)網(wǎng)絡(luò)

神經(jīng)網(wǎng)絡(luò)是一種運算模型,由大量的節(jié)點(或稱神經(jīng)元)之間相互聯(lián)接構(gòu)成。每個節(jié)點代表一種特定的輸出函數(shù),稱為激勵函數(shù)(activation function)。每兩個節(jié)點間的連接都代表一個對于通過該連接信號的加權(quán)值,稱之為權(quán)重,這相當(dāng)于人工神經(jīng)網(wǎng)絡(luò)的記憶。網(wǎng)絡(luò)的輸出則依網(wǎng)絡(luò)的連接方式,權(quán)重值和激勵函數(shù)的不同而不同。而網(wǎng)絡(luò)自身通常都是對自然界某種算法或者函數(shù)的逼近,也可能是對一種邏輯策略的表達。

人工神經(jīng)網(wǎng)絡(luò)(ANN)以大腦處理機制作為基礎(chǔ),開發(fā)用于建立復(fù)雜模式和預(yù)測問題的算法。該類型算法在語音、語義、視覺、各類游戲等任務(wù)中表現(xiàn)極好,但需要大量數(shù)據(jù)進行訓(xùn)練,且訓(xùn)練要求很高的硬件配置。

ANN在圖像和字符識別中起著重要的作用,手寫字符識別在欺詐檢測甚至國家安全評估中有很多應(yīng)用。ANN 的研究為深層神經(jīng)網(wǎng)絡(luò)鋪平了道路,是「深度學(xué)習(xí)」的基礎(chǔ),現(xiàn)已在計算機視覺、語音識別、自然語言處理等方向開創(chuàng)了一系列令人激動的創(chuàng)新。

2.決策樹

在機器學(xué)習(xí)中,決策樹是一個預(yù)測模型,他代表的是對象屬性與對象值之間的一種映射關(guān)系。其采用一種樹形結(jié)構(gòu),其中每個內(nèi)部節(jié)點表示一個屬性上的測試,每個分支代表一個測試輸出,每個葉節(jié)點代表一種類別。

決策樹算法屬于非參數(shù)型,較為容易解釋,但其趨向過擬合;可能陷入局部最小值中;無法在線學(xué)習(xí)。決策樹的生成主要分為兩步:1.節(jié)點的分裂:當(dāng)一個節(jié)點所代表的屬性無法給出判斷時,則選擇將該節(jié)點分成2個子節(jié)點 2. 閾值的確定:選擇適當(dāng)?shù)拈撝凳沟梅诸愬e誤率最小。

分類樹(決策樹)是一種十分常用的分類方法。它是一種監(jiān)督學(xué)習(xí),所謂監(jiān)督學(xué)習(xí)就是給定一堆樣本,每個樣本都有一組屬性和一個類別,這些類別是事先確定的,那么通過學(xué)習(xí)得到一個分類器,這個分類器能夠?qū)π鲁霈F(xiàn)的對象給出正確的分類。這樣的機器學(xué)習(xí)就被稱之為監(jiān)督學(xué)習(xí)。

3.集成算法

簡單算法一般復(fù)雜度低、速度快、易展示結(jié)果,其中的模型可以單獨進行訓(xùn)練,并且它們的預(yù)測能以某種方式結(jié)合起來去做出一個總體預(yù)測。每種算法好像一種專家,集成就是把簡單的算法組織起來,即多個專家共同決定結(jié)果。

集成算法比使用單個模型預(yù)測出來的結(jié)果要精確的多,但需要進行大量的維護工作。

AdaBoost的實現(xiàn)是一個漸進的過程,從一個最基礎(chǔ)的分類器開始,每次尋找一個最能解決當(dāng)前錯誤樣本的分類器。好處是自帶了特征選擇,只使用在訓(xùn)練集中發(fā)現(xiàn)有效的特征,這樣就降低了分類時需要計算的特征數(shù)量,也在一定程度上解決了高維數(shù)據(jù)難以理解的問題。

4.回歸算法

回歸分析是在一系列的已知自變量與因變量之間的相關(guān)關(guān)系的基礎(chǔ)上,建立變量之間的回歸方程,把回歸方程作為算法模型,通過其來實現(xiàn)對新自變量得出因變量的關(guān)系。因此回歸分析是實用的預(yù)測模型或分類模型。

在線性回歸中,數(shù)據(jù)使用線性預(yù)測函數(shù)來建模,并且未知的模型參數(shù)也是通過數(shù)據(jù)來估計。這些模型被叫做線性模型。最常用的線性回歸建模是給定X值的y的條件均值是X的仿射函數(shù)。不太一般的情況,線性回歸模型可以是一個中位數(shù)或一些其他的給定X的條件下y的條件分布的分位數(shù)作為X的線性函數(shù)表示。像所有形式的回歸分析一樣,線性回歸也把焦點放在給定X值的y的條件概率分布,而不是X和y的聯(lián)合概率分布(多元分析領(lǐng)域)。

線性回歸是回歸分析中第一種經(jīng)過嚴格研究并在實際應(yīng)用中廣泛使用的類型。這是因為線性依賴于其未知參數(shù)的模型比非線性依賴于其未知參數(shù)的模型更容易擬合,而且產(chǎn)生的估計的統(tǒng)計特性也更容易確定。

線性回歸模型經(jīng)常用最小二乘逼近來擬合,但他們也可能用別的方法來擬合,比如用最小化“擬合缺陷”在一些其他規(guī)范里(比如最小絕對誤差回歸),或者在橋回歸中最小化最小二乘損失函數(shù)的懲罰.相反,最小二乘逼近可以用來擬合那些非線性的模型.因此,盡管“最小二乘法”和“線性模型”是緊密相連的,但他們是不能劃等號的。

5.貝葉斯算法

樸素貝葉斯分類是一種十分簡單的分類算法:對于給出的待分類項,求解在此項出現(xiàn)的條件下各個類別出現(xiàn)的概率,哪個最大,就認為此待分類項屬于哪個類別。

樸素貝葉斯分類分為三個階段,1.根據(jù)具體情況確定特征屬性,并對每個特征屬性進行適當(dāng)劃分,形成訓(xùn)練樣本集合2.計算每個類別在訓(xùn)練樣本中的出現(xiàn)頻率及每個特征屬性劃分對每個類別的條件概率估計3.使用分類器對待分類項進行分類。

分類是數(shù)據(jù)分析和機器學(xué)習(xí)領(lǐng)域的一個基本問題。文本分類已廣泛應(yīng)用于網(wǎng)絡(luò)信息過濾、信息檢索和信息推薦等多個方面。數(shù)據(jù)驅(qū)動分類器學(xué)習(xí)一直是近年來的熱點,方法很多,比如神經(jīng)網(wǎng)絡(luò)、決策樹、支持向量機、樸素貝葉斯等。相對于其他精心設(shè)計的更復(fù)雜的分類算法,樸素貝葉斯分類算法是學(xué)習(xí)效率和分類效果較好的分類器之一。直觀的文本分類算法,也是最簡單的貝葉斯分類器,具有很好的可解釋性,樸素貝葉斯算法特點是假設(shè)所有特征的出現(xiàn)相互獨立互不影響,每一特征同等重要。但事實上這個假設(shè)在現(xiàn)實世界中并不成立:首先,相鄰的兩個詞之間的必然聯(lián)系,不能獨立;其次,對一篇文章來說,其中的某一些代表詞就確定它的主題,不需要通讀整篇文章、查看所有詞。所以需要采用合適的方法進行特征選擇,這樣樸素貝葉斯分類器才能達到更高的分類效率。

上述所有信息便是小編這次為大家推薦的有關(guān)機器學(xué)習(xí)算法的內(nèi)容,希望大家能夠喜歡,想了解更多有關(guān)它的信息或者其它內(nèi)容,請關(guān)注我們網(wǎng)站哦。

聲明:該篇文章為本站原創(chuàng),未經(jīng)授權(quán)不予轉(zhuǎn)載,侵權(quán)必究。
換一批
延伸閱讀

液壓舵機殼體是航空液壓操縱系統(tǒng)的核心零件 , 內(nèi)部包含大量復(fù)雜流道 。傳統(tǒng)的流道路徑人工設(shè)計方法效率低下 , 結(jié)果一致性差 。針對該問題 , 提出了一種基于混合近端策略優(yōu)化(HPP0算法)的流道路徑規(guī)劃算法 。通過分析流...

關(guān)鍵字: 液壓流道規(guī)劃 機器學(xué)習(xí) HPP0算法 減材制造 液壓舵機殼體

深入探索這一個由 ML 驅(qū)動的時域超級采樣的實用方法

關(guān)鍵字: 機器學(xué)習(xí) GPU 濾波器

傳統(tǒng)的網(wǎng)絡(luò)安全防護手段多依賴于預(yù)先設(shè)定的規(guī)則和特征庫,面對日益復(fù)雜多變、層出不窮的新型網(wǎng)絡(luò)威脅,往往力不從心,難以做到及時且精準的識別。AI 技術(shù)的融入則徹底改變了這一局面。機器學(xué)習(xí)算法能夠?qū)A康木W(wǎng)絡(luò)數(shù)據(jù)進行深度學(xué)習(xí),...

關(guān)鍵字: 網(wǎng)絡(luò)安全 機器學(xué)習(xí) 輔助決策

人工智能(AI)和機器學(xué)習(xí)(ML)是使系統(tǒng)能夠從數(shù)據(jù)中學(xué)習(xí)、進行推理并隨著時間的推移提高性能的關(guān)鍵技術(shù)。這些技術(shù)通常用于大型數(shù)據(jù)中心和功能強大的GPU,但在微控制器(MCU)等資源受限的器件上部署這些技術(shù)的需求也在不斷增...

關(guān)鍵字: 嵌入式系統(tǒng) 人工智能 機器學(xué)習(xí)

北京——2025年7月30日 自 2018 年以來,AWS DeepRacer 已吸引全球超過 56 萬名開發(fā)者參與,充分印證了開發(fā)者可以通過競技實現(xiàn)能力成長的實踐路徑。如今,亞馬遜云科技將通過亞馬遜云科技AI聯(lián)賽,將這...

關(guān)鍵字: AI 機器學(xué)習(xí)

2025年7月28日 – 專注于引入新品的全球電子元器件和工業(yè)自動化產(chǎn)品授權(quán)代理商貿(mào)澤電子 (Mouser Electronics) 持續(xù)擴展其針對機器學(xué)習(xí) (ML) 工作優(yōu)化的專用解決方案產(chǎn)品組合。

關(guān)鍵字: 嵌入式 機器學(xué)習(xí) 人工智能

在這個高速發(fā)展的時代,無論是健身、競技、興趣活動,還是康復(fù)訓(xùn)練,對身體表現(xiàn)的感知與理解,正成為提升表現(xiàn)、實現(xiàn)突破的關(guān)鍵。如今,先進技術(shù)正為我們架起一座橋梁,將每一次身體活動轉(zhuǎn)化為有價值的洞察,幫助我們更聰明地訓(xùn)練、更高效...

關(guān)鍵字: 傳感器 機器學(xué)習(xí) IMU

在科技飛速發(fā)展的當(dāng)下,邊緣 AI 正經(jīng)歷著一場深刻的變革。從最初的 TinyML 微型機器學(xué)習(xí)探索低功耗 AI 推理,到邊緣推理框架的落地應(yīng)用,再到平臺級 AI 部署工具的興起以及垂類模型的大熱,我們已經(jīng)成功實現(xiàn)了 “讓...

關(guān)鍵字: 機器學(xué)習(xí) 邊緣 AI 無人機

在AI算力需求指數(shù)級增長的背景下,NVIDIA BlueField-3 DPU憑借其512個NPU核心和400Gbps線速轉(zhuǎn)發(fā)能力,為機器學(xué)習(xí)推理提供了革命性的硬件卸載方案。通過將PyTorch模型量化至INT8精度...

關(guān)鍵字: PyTorch 機器學(xué)習(xí) DPU

中國,北京,2025年7月17日——隨著AI迅速向邊緣領(lǐng)域挺進,對智能邊緣器件的需求隨之激增。然而,要在小尺寸的微控制器上部署強大的模型,仍是困擾眾多開發(fā)者的難題。開發(fā)者需要兼顧數(shù)據(jù)預(yù)處理、模型選擇、超參數(shù)調(diào)整并針對特定...

關(guān)鍵字: 邊緣AI 嵌入式 機器學(xué)習(xí)
關(guān)閉